Advertisement
Biotechnology
Subscribe to Biotechnology
View Sample

FREE Email Newsletter

Of bio-hairpins and polymer-spaghetti

October 9, 2014 11:02 am | News | Comments

When a sturdy material becomes soft and spongy, one usually suspects damage. But this is not always the case, especially in biological cells. By looking at microscopic biopolymer networks, researchers in Germany revealed that such materials soften by undergoing a transition from an entangled spaghetti of filaments to aligned layers of bow-shaped filaments that slide past each other. This finding may explain how other filaments flow.

“Cyberwar” against cancer gets boost from intelligent nanocarriers

October 9, 2014 10:48 am | News | Comments

New research involving scientists in the U.S. and Israel offers new insight into the lethal interaction between cancer cells and the immune system's communications network. The study authors devised a new computer program that models a specific channel of cell-to-cell communication involving exosomes that both cancer and immune cells harness to communicate with other cells. This “cyberwarfare” model reveals three distinct states of cancer.

Technology that controls brain cells with radio waves earns early BRAIN grant

October 8, 2014 12:30 pm | News | Comments

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a research associate in Rockefeller Univ.’s Laboratory of Molecular Genetics is among the first to receive funding from President Barack Obama’s BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

Advertisement

Neuroscientists use snail research to help explain “chemo brain”

October 8, 2014 12:00 pm | News | Comments

It is estimated that as many as half of patients taking cancer drugs experience a decrease in mental sharpness, but what causes “chemo brain” has eluded scientists. In the study involving a sea snail that shares many of the same memory mechanisms as humans and a drug used to treat cancer, scientists in Texas identified memory mechanisms blocked by the drug. Then, they were able to counteract the mechanisms by administering another agent.

Researchers turn computers into powerful allies in the fight against AIDS

October 7, 2014 9:54 am | News | Comments

Until now, researchers searching for compounds that have the potential to become a new HIV drug have been hampered by slow computers and inaccurate prediction models. Now, researchers in Denmark have developed an effective model based on quantum mechanics and molecular mechanics that has found, out of a half-million compounds, 14 of interest in just weeks.

Green tea-based “missiles” kill cancer cells more effectively

October 7, 2014 9:47 am | News | Comments

Green tea has long been known for its anti-oxidant, anti-cancer, anti-aging and anti-microbial properties. A group of researchers from the Institute of Bioengineering and Nanotechnology in Singapore has taken the health benefits of green tea to the next level by using one of its ingredients, the antioxidant epigallocatechin gallate, to develop a drug delivery system that kills cancer cells more efficiently.

Three win medicine Nobel for discovering brain's GPS

October 7, 2014 9:28 am | by Karl Ritter and Jill Lawless, Associated Press | News | Comments

A U.S.-British scientist and a Norwegian husband-and-wife research team won the Nobel Prize in medicine for discovering the brain's navigation system—the inner GPS that helps us find our way in the world—a revelation that could lead to advances in diagnosing Alzheimer's. The research by John O'Keefe, May-Britt Moser and Edvard Moser represents a "paradigm shift" in neuroscience that could help researchers understand Alzheimer's disease.

Liquid DNA behind virus attacks

October 6, 2014 11:48 am | News | Comments

According to two recent studies, viruses can convert their DNA from solid to fluid form, explaining how viruses manage to eject DNA into the cells of their victims. The researchers in one study, which focused on herpes infections, say the discovery was surprising: No one was previously aware of the “phase transition” from solid to fluid form in virus DNA.

Advertisement

A glimpse into the 3-D brain

October 6, 2014 11:39 am | News | Comments

People who wish to know how memory works are forced to take a glimpse into the brain. They can now do so without bloodshed: Researchers have developed a new method for creating 3-D models of memory-relevant brain structures. The approach is unique because it enables automatic calculation of the neural interconnections in the brain on the basis of their position inside the space and their projection directions.

“Programmable” antibiotic uses enzyme to attack drug-resistant microbes

October 6, 2014 8:47 am | News | Comments

Microbes populating the human body have good, bad and mostly mysterious implications for our health. But when something goes wrong, we use the brute force of traditional antibiotics, which wipe out everything at once. Researchers at Rockefeller Univ. have developed a more subtle approach that uses the bacterial enzyme known as Cas9 to target a particular sequence of DNA, cutting that up but leaving more innocent microbes alone.

Scientists develop barcoding tools for stem cells

October 6, 2014 8:15 am | News | Comments

A 7-year-project to develop a barcoding and tracking system for tissue stem cells has revealed previously unrecognized features of normal blood production: New data from Harvard Stem Cell Institute scientists at Boston Children's Hospital suggests, surprisingly, that the billions of blood cells that we produce each day are made not by blood stem cells, but rather their less pluripotent descendants, called progenitor cells.

A protein approach to halve and to whole

October 6, 2014 8:12 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have developed a plug-and-play approach to detect interactions between proteins they say could greatly improve understanding of basic biological functions. The Rice team, in collaboration with Baylor College of Medicine, split and added sticky tags to fluorescent proteins that become biosensors when inserted into living cells.

First pictures of BRCA2 protein show how it works to repair DNA

October 6, 2014 8:07 am | by Sam Wong, Imperial College London | News | Comments

Mutations in the gene that encodes BRCA2 are well known for raising the risk of breast cancer and other cancers. Although the protein was known to be involved in DNA repair, its shape and mechanism have been unclear, making it impossible to target with therapies. Researchers in the U.K. purified the protein and used electron microscopy to reveal its structure and how it interacts with other proteins and DNA.

Advertisement

NIH awards UC Berkeley $7.2 million to advance brain initiative

October 2, 2014 8:28 am | by Robert Sanders, UC Berkeley | News | Comments

The National Institutes of Health this week announced its first research grants through President Barack Obama’s BRAIN Initiative, including three awards to the Univ. of California, Berkeley, totaling nearly $7.2 million over three years. The projects are among 58 funded in this initial wave of NIH grants, involving 100 researchers and a total of $46 million in fiscal year 2014 dollars alone.

“Stealth” nanoparticles could improve cancer vaccines

October 2, 2014 8:01 am | News | Comments

Cancer vaccines have recently emerged as a promising approach for killing tumor cells before they spread. But so far, most clinical candidates haven’t worked that well. Now, scientists have developed a new way to deliver vaccines that successfully stifled tumor growth when tested in laboratory mice. And the key is in the vaccine’s unique stealthy nanoparticles.

Agilent to collaborate with Univ. of Toronto on metabolomics solutions

October 2, 2014 7:57 am | News | Comments

A collaboration has been announced between Agilent Technologies and the Univ. of Toronto’s Donnelly Centre for Cellular and Biomolecular Research to produce a comprehensive metabolomics multiple-reaction monitoring library and methodology, using Agilent’s Infinity 1290 UHPLC, 6460 triple quadrupole mass spectrometry system, and MassHunter Software. The goal is to accelerate quantification of hundreds of metabolically important compounds.

“Smart” bandage emits phosphorescent glow for healing below

October 1, 2014 9:37 am | News | Comments

Inspired by a desire to help wounded soldiers, an international team has created a paint-on, see-through, “smart” bandage that glows to indicate a wound’s tissue oxygenation concentration. Because oxygen plays a critical role in healing, mapping these levels in severe wounds and burns can help to greatly improve the success of surgeries to restore limbs and physical functions.

Virtual breast could improve cancer detection

October 1, 2014 9:10 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Only a minority of suspicious mammograms actually leads to a cancer diagnosis, which results in lots of needless worry and spent time for women and their families. Ultrasound elastography could be an excellent screening tool but it requires a lot of skill and interpretation. In an effort to improve results, researchers in Michigan have developed a virtual “breast”, allowing medical professionals to practice in the laboratory.

Drug delivery capsule may replace injections

October 1, 2014 8:22 am | by Anne Trafton, MIT News Office | Videos | Comments

Given a choice, most patients would prefer to take a drug orally instead of getting an injection. Unfortunately, many drugs, can’t be given as a pill because they get broken down in the stomach before they can be absorbed. To help overcome that obstacle, researchers have devised a novel drug capsule coated with tiny needles that can inject drugs directly into the lining of the stomach after swallowed.

At the interface of math and science

September 30, 2014 8:09 am | by Julie Cohen, UC Santa Barbara | News | Comments

Univ. of California, Santa Barbara’s Paul Atzberger, a professor in the Department of Mathematics and in mechanical engineering, often works in areas where mathematics plays an ever more important role in the discovery and development of new ideas. Most recently he has developed new mathematical approaches to gain insights into how proteins move around within lipid bilayer membranes.

Scientists identify the signature of aging in the brain

September 29, 2014 12:58 pm | News | Comments

How the brain ages is still largely an open question because this organ is mostly insulated from direct contact with other systems in the body. In recent research, scientists in Israel found evidence of a unique “signature” that may be the “missing link” between cognitive decline and aging. The scientists believe that this discovery may lead, in the future, to treatments that can slow or reverse cognitive decline in older people.

Green light for clever algae

September 29, 2014 8:46 am | by Meike Drießen, Ruhr Univ. Bochum | News | Comments

Cryptophytes, complex single-cell algae that make up a lot of the ocean's phytoplankton, have, in the course of evolution, adapted their light-harvesting mechanisms to their environment and have thus become capable of utilizing green light. Researchers in Germany have recently been the first ones to reveal similarities and differences in the assembly of this light-harvesting machinery compared to cyanobacteria and red algae.

Cell sorting method separates 10 billion cells in 30 minutes

September 26, 2014 9:42 am | News | Comments

Almost all of today’s previously existing cell-sorting methods rely on what is called a single-cell analysis platform. A researcher in Hawaii took a different approach, inventing a bulk method that sorts different cell populations by tuning their solubility. Instead of targeting individual features, the  measurement principle sorts cells by differentiating their characteristic surface free energies.

Protein “map” could lead to potent new cancer drugs

September 26, 2014 8:55 am | News | Comments

Chemists in the U.K. have gained fresh insights into how a disease-causing enzyme makes changes to proteins and how it can be stopped. The scientists hope their findings will help them to design drugs that could target the enzyme, known as N-myristoyltransferase (NMT), and potentially lead to new treatments for cancer and inflammatory conditions.

Platelets modulate clotting behavior by “feeling” their surroundings

September 25, 2014 8:31 am | by John Toon, Georgia Institute of Technology | News | Comments

Platelets, the tiny cell fragments whose job it is to stop bleeding, are very simple. They don’t have a cell nucleus. But they can “feel” the physical environment around them, researchers at Emory Univ. and Georgia Tech have discovered. Platelets respond to surfaces with greater stiffness by increasing their stickiness, the degree to which they “turn on” other platelets and other components of the clotting system, the researchers found.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading