Advertisement
Biotechnology
Subscribe to Biotechnology

The Lead

Nanoparticle “alarm clock” may awaken immune systems put to sleep by cancer

July 25, 2014 3:09 pm | News | Comments

Cancerous tumors protect themselves by tricking the immune system into accepting everything as normal, even while cancer cells are dividing and spreading. One pioneering approach to combat this effect is to use nanoparticles to jumpstart the body's ability to fight tumors. Recent combines these therapeutic nanoparticles with heat to stimulate the immune system.

Novel virus discovered in half the world’s population

July 25, 2014 7:14 am | by Michael Price, San Diego State Univ. | Videos | Comments

Virologists and biologists in California have...

Researchers discover new way to determine cancer risk of chemicals

July 25, 2014 7:00 am | News | Comments

A new study has shown that it is possible to...

Antioxidant biomaterial promotes healing

July 25, 2014 6:55 am | News | Comments

When a foreign material like a medical device or...

View Sample

FREE Email Newsletter

Study reveals atomic structure of key muscle component

July 25, 2014 6:47 am | News | Comments

Actin is the most abundant protein in the body, and is the basis of most movement in the body. Adding to the growing fundamental understanding of the machinery of muscle cells, a group of biophysicists in Pennsylvania have published work that describes in minute detail how actin filaments are stabilized at one of their ends to form a basic muscle structure called the sarcomere.

Quenching the world's water and energy crises, one tiny droplet at a time

July 24, 2014 8:40 am | by Sarah Bates, National Science Foundation | Videos | Comments

More than a decade ago, news of a Namibian desert beetle’s efficient water collection system inspired engineers to try and reproduce these surfaces in the laboratory. Small-scale advances in fluid physics, materials engineering and nanoscience since that time have brought them close to succeeding. And their work could have impact on a wide range of industries at the macroscale.

Reconstructing an animal’s development cell by cell

July 21, 2014 9:36 am | News | Comments

Janelia Research Campus experts have built a new computational method that can essentially automate much of the time-consuming process of reconstructing an animal's developmental building plan cell by cell. Using image data obtaining using a sophisticated form of light sheet microscopy, the tool can track the movement of cells in an animal’s body in 3-D.

Advertisement

Scientists map one of the most important proteins in life—and cancer

July 21, 2014 9:26 am | News | Comments

In the U.K., researchers have revealed the structure of one of the most important and complicated proteins in cell division, the anaphase-promoting complex. Electron microscopy and software has produced images of the gigantic protein in unprecedented detail and could transform scientists' understanding of exactly how cells copy their chromosomes and divide. It could also reveal binding sites for future cancer drugs.

DNA used as a lightswitch

July 21, 2014 9:12 am | News | Comments

Using two thin, tiny gold nanorods 10,000 times thinner than a human hair, researchers from the U.S. and Germany have succeeded in creating an adjustable filter for so-called circularly polarized light. This switch for nano-optics is made from two tiny gold rods that reversibly change their optical properties when specific DNA molecules are added.

Researchers create new method to draw molecules from live cells

July 18, 2014 12:30 pm | by Jeannie Kever, Univ. of Houston | News | Comments

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time. Using magnetized carbon nanotubes, scientists in Texas have devised a new method for extracting molecules from live cells without disrupting cell development.

National Xenopus Resource at MBL innovates new way to study proteins

July 17, 2014 10:45 am | by Laurel Hamers, Marine Biological Laboratory | News | Comments

Many organisms that hold potential for proteomic analysis do not yet have a completely sequenced genome because the costs are prohibitive. Xenopus laevis, the African clawed frog, is one such species. Researchers at the Marine Biological Laboratory have found a work-around. Instead of relying on DNA, they used mRNA sequences to more efficiently create a reference database that can be used for proteomic analysis of Xenopus.

Understanding how the brain retrieves memories

July 17, 2014 8:07 am | by Donald B Johnston, LLNL | News | Comments

Lawrence Livermore National Laboratory scientists are developing electrode array technology for monitoring brain activity as part of a collaborative research project with the Univ. of California San Francisco (UC San Francisco) to better understand how the neural circuitry of the brain works during memory retrieval.

Advertisement

Study: Squid skin protein could improve biomedical technologies

July 16, 2014 2:24 pm | News | Comments

The common pencil squid may hold the key to a new generation of medical technologies that could communicate more directly with the human body. Materials science researchers in California have discovered that reflectin, a protein in the tentacled creature’s skin, can conduct positive electrical charges, or protons, making it a promising material for building biologically inspired devices.  

Bubble wrap serves as sheet of tiny test tubes in resource-limited regions

July 16, 2014 11:46 am | News | Comments

Popping the blisters on the bubble wrap might be the most enjoyable thing about moving. But now, researchers led by 2007 R&D Magazine Scientist of the Year George Whitesides propose a more productive way to reuse the popular packing material: as a sheet of small, test tube-like containers for medical and environmental samples. Analyses can take place right in the bubbles.

Entomology research fights mosquitoes with mosquitoes

July 15, 2014 4:58 pm | Videos | Comments

Researchers in Kentucky have developed a technology that uses male mosquitoes to effectively sterilize females through a naturally occurring bacterium. Called MosquitoMate, the new technology has been issued an experimental use permit for open field releases targeting the invasive Asian tiger mosquito, which is a vector for newly introduced pathogens like the Chikungunya virus.

Removing parts of shape-shifting protein explains how blood clots

July 15, 2014 1:54 pm | News | Comments

Prothrombin is an inactive precursor for thrombin, a key blood-clotting protein, and is essential for life because of its ability to coagulate blood. Using x-ray crystallography, researchers have published the first image of this important protein. By removing disordered sections of the protein’s structure, scientists have revealed its underlying molecular mechanism for the first time.

Skin gel stops breast cancer growth without dangerous side effects

July 15, 2014 1:47 pm | by Marla Paul, Northwestern Univ. | News | Comments

Tamoxifen is an oral drug that is used for breast cancer prevention and as therapy for non-invasive breast cancer and invasive cancer. Seema Khan, a professor of surgery at Northwestern Univ., has found that is tamoxifen is used in gel form, it reduces the growth of cancer cells while minimizing dangerous side effects such as blood clots and uterine cancer.

Advertisement

Researchers invent nanotech microchip to diagnose type-1 diabetes

July 14, 2014 9:22 am | News | Comments

A cheap, portable, microchip-based test for diagnosing type-1 diabetes could speed up diagnosis and enable studies of how the disease develops. Handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes. Until now, making the distinction has required a slow, expensive test available only in sophisticated healthcare settings.

Artificial cilia: Scientists develop nanostructured transportation system

July 7, 2014 3:40 pm | News | Comments

For billions of years, bacteria have moved themselves using cilia. Now, researchers have constructed molecules that imitate these tiny, hair-like structures. The innovation was possible by nanofabricating artificial cilia that would respond in just one direction to provide a net displacement of motion.

How knots can swap positions on a DNA strand

July 7, 2014 9:48 am | News | Comments

Recent computer simulations show how, for the first time, two knots on a DNA strand can interchange their positions, with one knot growing in size and the other diffusing along the contour of the first. This swapping of positions on a DNA strand may also happen in living organisms, and the mechanism may play an important role in future technologies such as nanopore sequencing.

New discovery in living cell signaling

July 7, 2014 9:33 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An international collaboration of researchers have unlocked the secret behind the activation of the Ras family of proteins, one of the most important components of cellular signaling networks in biology and major drivers of cancers that are among the most difficult to treat. To make the discovery, they performed single molecule studies of Ras activation in a membrane environment.

DNA origami nano-tool provides important clue to cancer

July 7, 2014 9:26 am | News | Comments

Researchers in Sweden have headed a study that provides new knowledge about the EphA2 receptor, which is significant in several forms of cancer. The researchers employed the method of DNA origami, in which a DNA molecule is shaped into a nanostructure, and used these structures to test theories about cell signalling.

“Nanojuice” could improve how doctors examine the gut

July 7, 2014 8:05 am | by Cory Nealon, Univ. at Buffalo | News | Comments

Located deep in the human gut, the small intestine is not easy to examine: X-rays, MRIs and ultrasound images each suffer limitations. Univ. at Buffalo researchers are developing a new imaging technique involving nanoparticles suspended in liquid to form “nanojuice” that patients would drink. Upon reaching the small intestine, doctors would strike the nanoparticles with laser light, providing a non-invasive, real-time view of the organ.

Scientists withdraw claim about making stem cells

July 2, 2014 1:41 pm | by Malcolm Ritter, AP Science Writer | News | Comments

In two papers published in January in the journal Nature, Japanese and American researchers said that they'd been able to transform ordinary mouse cells into versatile stem cells by exposing them to a mildly acidic environment. The scientists withdrew that claim Wednesday, admitting to "extensive" errors that meant they were “unable to say without a doubt" that the method works.

Some stem cell methods closer to “gold standard” than others

July 2, 2014 1:17 pm | News | Comments

New research led by the Salk Institute shows, for the first time, that stem cells created using two different methods are far from identical. Their work reveals that stem cells created by moving genetic material from a skin cell into an empty egg cell, instead of activating genes to revert adult cells to their embryonic state, more closely resemble human embryonic stem cells, which are considered the gold standard in the field.

Fluorescent molecular rotors could help find anti-cancer drugs

July 2, 2014 12:13 pm | News | Comments

Researchers have already used molecular rotors as viscosity sensor probes in live cells, but a recent study in Singapore is the first to report on the use of fluorescent molecular rotors to study critical protein interactions.

Blind lead the way in brave new world of tactile technology

July 2, 2014 9:46 am | by Yasmin Anwar, UC Berkeley | News | Comments

New research at UC Berkeley has found that people are better and faster at navigating tactile technology when using both hands and several fingers. Moreover, blind people in the study outmaneuvered their sighted counterparts, perhaps because they’ve developed superior cognitive strategies for finding their way around. These insights are useful as more media companies are implementing tactile interfaces.

Behind a marine creature’s bright green fluorescent glow

July 2, 2014 9:43 am | News | Comments

Scientists at Scripps Institution of Oceanography have conducted the most detailed examination of green fluorescent proteins (GFPs) in lancelets, marine invertebrates also known as “amphioxus.” They have deciphered the structural components related to fluorescence and have found that only a few key structural differences at the nanoscale allows the sea creature to emit different brightness levels.

Automated dynamic light scattering benefits protein-protein quantifications

July 1, 2014 2:08 pm | Application Notes

Wyatt Technology Corp. has highlighted a recently authored study that outlines the advantages of quantifying protein-protein interactions (PPI) using automated dynamic light scattering (DLS) in high-throughput screening (HTS) mode to identify promising candidates for drug-like properties. Automated DLS helps establish the suitability of formulations before entering extended stability studies.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading