Subscribe to Bacteria
View Sample

FREE Email Newsletter

Yeast study yields potential for new drugs

February 25, 2013 1:20 pm | News | Comments

While studying a mutant strain of yeast, Purdue University researchers may have found a new target for drugs to combat cholesterol and fungal diseases.

Scientists unveil secrets of important natural antibiotic

February 21, 2013 1:38 pm | News | Comments

An international team of scientists has discovered how an important natural antibiotic called dermcidin, produced by our skin when we sweat, is a highly efficient tool to fight tuberculosis germs and other dangerous bugs. Their results could contribute to the development of new antibiotics that control multi-resistant bacteria.

Antibacterial protein's molecular workings revealed

February 21, 2013 11:05 am | News | Comments

On the front lines of our defenses against bacteria is the protein calprotectin, which "starves" invading pathogens of metal nutrients. Vanderbilt University investigators now report new insights to the workings of calprotectin—including a detailed structural view of how it binds the metal manganese. Their findings could guide efforts to develop novel antibacterials that limit a microbe's access to metals.


New antimicrobial hydrogels fight superbugs and drug-resistant biofilms

January 24, 2013 8:20 am | News | Comments

Bacterial biofilms, which diseased groupings of cells found in 80% of infections, are a significant health hazard and one of the biggest headaches for hospitals and their constant battle against disease. Researchers from IBM, with the help of scientists in Singapore, revealed today a synthetic antimicrobial hydrogel that can break through diseased biofilms and completely eradicate drug-resistant bacteria upon contact. It is the first hydrogel to be biodegradable, biocompatible, and non-toxic.

Odd biochemistry yields lethal bacterial protein

January 22, 2013 10:22 am | News | Comments

While working out the structure of a cell-killing protein produced by some strains of the bacterium Enterococcus faecalis, researchers stumbled on a bit of unusual biochemistry. They found that a single enzyme helps form distinctly different, 3D ring structures in the protein, one of which had never been observed before.

Eavesdropping on the hidden lives of microbes

January 22, 2013 7:41 am | by Denise Brehm, Civil and Environmental Engineering | News | Comments

Microbiologists who study wild marine microbes, as opposed to the laboratory-grown variety, face enormous challenges in getting a clear picture of the daily activities of their subjects. But a team of scientists from Massachusetts Institute of Technology and the Monterey Bay Aquarium Research Institute recently figured out how to make the equivalent of a nature film, showing the simultaneous activities of many coexisting species in their native habitat over time.

Single-celled algae shed light on social lives of microbes

January 21, 2013 4:58 pm | News | Comments

Cheating is a behavior not limited to humans, animals and plants. Even microscopically small, single-celled algae do it, a team of University of Arizona researchers has discovered. Their research adds to the emerging view that microbes often have active social lives. Unlocking the secrets of those lives could help control serious threats to ecological or human health.

Breath test identifies bacteria's fingerprint

January 14, 2013 11:51 am | News | Comments

Scientists have identified the chemical "fingerprints" given off by specific bacteria when present in the lungs, potentially allowing for a quick and simple breath test to diagnose infections such as tuberculosis. The researchers have successfully distinguished between different types of bacteria, as well as different strains of the same bacteria, in the lungs of mice by analyzing the volatile organic compounds (VOCs) present in exhaled breath.


Study quantifies the size of holes antibacterials create in cell walls to kill bacteria

January 10, 2013 2:08 pm | News | Comments

Research has shown that alternative antimicrobials such as PlyC can effectively kill bacteria. However, fundamental questions remain about how bacteria respond to the holes that these therapeutics make in their cell wall and what size holes bacteria can withstand before breaking apart. Answering those questions could improve the effectiveness of current antibacterial drugs and initiate the development of new ones. Researchers recently conducted a study to try to answer those questions.

Engineered bacteria make fuel from sunlight

January 7, 2013 4:23 pm | News | Comments

Chemists at the University of California, Davis have engineered blue-green algae to grow chemical precursors for fuels and plastics—the first step in replacing fossil fuels as raw materials for the chemical industry.

Engineering alternative fuel with cyanobacteria

January 7, 2013 12:06 pm | News | Comments

Sandia National Laboratories Truman Fellow Anne Ruffing has engineered two strains of cyanobacteria to produce free fatty acids, a precursor to liquid fuels, but she has also found that the process cuts the bacteria’s production potential.

New compound overcomes drug-resistant Staph infection in mice

January 7, 2013 11:37 am | News | Comments

Researchers have discovered a new compound that restores the health of mice infected with methicillin-resistant Staphylococcus aureus (MRSA), an otherwise dangerous bacterial infection. The new compound targets an enzyme not found in human cells but which is essential to bacterial survival.

Unlocking nature’s quantum engineering for efficient solar energy

January 7, 2013 8:12 am | News | Comments

Certain biological systems living in low light environments have unique protein structures for photosynthesis that use quantum dynamics to convert 100% of absorbed light into electrical charge, displaying astonishing efficiency that could lead to new understanding of renewable solar energy, suggests newly published research from the University of Cambridge.


Researchers solve crystal structure of key biofilm protein

January 2, 2013 9:28 am | News | Comments

Researchers at the University of Cincinnati report that they have solved the crystal structure of a protein involved in holding bacterial cells together in a biofilm, a major development in their exploration of the causes of hospital-acquired infections.

New study exposes living cells to synthetic protein

December 28, 2012 7:51 am | News | Comments

One approach to understanding components in living organisms is to attempt to create them artificially, using principles of chemistry, engineering, and genetics. A suite of powerful techniques—referred to as synthetic biology—have been used to produce self-replicating molecules, artificial pathways in living systems, and organisms bearing synthetic genomes. In a new twist, researchers have fabricated an artificial protein in the laboratory and examined the surprising ways living cells respond to it.

Team solves mystery associated with DNA repair

December 13, 2012 5:06 pm | by Diana Yates, University of Illinois | News | Comments

Every time a human or bacterial cell divides, specialized proteins help copy DNA strands, using the originals as templates. Whenever these proteins encounter a break, they repair proteins to step in and bridge the gap. In a new study, researchers report they have finally identified how one important repair protein, RecA, does it job.

Tapping citizen-scientists for a novel gut check

December 7, 2012 11:22 am | by Lauran Neergaard, AP Medical Writer | News | Comments

For a modest fee and a stool sample, the truly curious can join one or two unusual new citizen-science projects that represent attempts to find out more about our microbiomes—the colonies of microbes that make up a large part of our bodies’ functions, especially the digestive. Researchers with uBiome and the American Gut Project hope to enroll thousands in the projects.

Ancient microbes survive beneath icy surface of Antarctic lake

December 3, 2012 10:48 am | News | Comments

Researchers funded by the National Science Foundation describe in a new publication a viable community of bacteria that ekes out a living in a dark, salty, and subfreezing environment beneath nearly 20 m of ice in one of Antarctica's most isolated lakes. The finding could have implications for the discovery of life in other extreme environments, including elsewhere in the solar system.

BioMAP could streamline search for new antibiotics

November 26, 2012 12:57 pm | News | Comments

Researchers at the University of California, Santa Cruz have developed a new strategy for finding novel antibiotic compounds, using a diagnostic panel of bacterial strains for screening chemical extracts from natural sources. The screening procedure, called BioMAP (antibiotic mode of action profile), promises to streamline the discovery of new antibiotics from natural sources by providing a low-cost, high-throughput platform for identifying compounds with novel antibiotic properties.

Deciphering bacterial doomsday decisions

November 26, 2012 11:28 am | News | Comments

Like a homeowner prepping for a hurricane, the bacterium Bacillus subtilis uses a long checklist to prepare for survival in hard times. In a new study, scientists at Rice University and the University of Houston uncovered an elaborate mechanism that allows B. subtilis to begin preparing for survival, even as it delays the ultimate decision of whether to "hunker down" and withdraw into a hardened spore.

Scientists unravel the mystery of marine methane oxidation

November 13, 2012 10:39 am | News | Comments

Vast amounts of methane are stored under the ocean floor, and anaerobic oxidation of methane coupled to sulfate respiration prevents the release of this gas. Though discovered decades ago, the mechanism for how microorganisms performed this reaction has remained a mystery. According to recent findings, a single microorganism can do this on its own, and does not need to be carried out in collaboration with a bacterium as previously thought.

Fluorescent pH-sensitive nanoparticles indicate bacterial growth

October 30, 2012 1:26 pm | News | Comments

The food industry is strict in its vigilance toward bacteria in products. Now their efforts may be eased by a new bacteria monitoring method developed by researchers in Germany. The fluorescence of nanoparticles embedded in an agarose growth medium, they report, changes significantly when the pH value changes because of bacterial metabolism. This can be monitored in real time with a simple digital camera.

Did bacteria spark evolution of multicellular life?

October 24, 2012 8:29 am | News | Comments

Bacteria have a bad rap as agents of disease, but scientists are increasingly discovering their many benefits, such as maintaining a healthy gut. A new study now suggests that bacteria may also have helped kick off one of the key events in evolution: the leap from one-celled organisms to many-celled organisms, a development that eventually led to all animals, including humans.

Researcher aims to understand strange secrets of magnetotactic bacteria

October 16, 2012 8:44 am | News | Comments

Magnetotactic bacteria are organisms which develop membrane-encapsulated nano-particles known as magnetosomes. Although these microbes were first discovered in 1975, the production of their magnetite crystals is still not fully understood. A researcher in the U.K. is now using computational simulation tools to discover how magnetosomes allow bacteria to orient themselves along the Earth’s magnetic field lines.

Evolving microbes help turn bio-oil into advanced biofuels

October 15, 2012 1:09 pm | News | Comments

The bacteria and microalgae typically used to ferment biofuels don’t react well to bio-oil produced by fast pyrolysis. The result of this thermochemical process is a thick, molasses-like oil that is toxic to the microbes. Researchers at Iowa State University, however, have adopted a hybrid approach that incorporates a biochemical conversion path to improve the microbes’ tolerance to contaminants.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.