Advertisement
Bacteria
Subscribe to Bacteria
View Sample

FREE Email Newsletter

Evidence of 3.5 billion-year-old bacterial ecosystems found in Australia

November 12, 2013 3:08 pm | News | Comments

Earth’s oldest sedimentary rocks are not only rare, but also almost always altered by hydrothermal and tectonic activity. The Pilbara district in Australia is a rare exception. A new study has revealed the well-preserved remnants of a complex ecosystem in a nearly 3.5 billion-year-old sedimentary rock sequence.

Bacteria may allow animals to send quick, voluminous messages

November 11, 2013 3:41 pm | News | Comments

Twitter clips human thoughts to a mere 140 characters. Animals’ scent posts may be equally as short, relatively speaking, yet they convey an encyclopedia of information about the animals that left them. Recent research show that the detailed scent posts of hyenas are, in part, products of symbiotic bacteria, microbes that have a mutually beneficial relationship with their hosts.

Rare new microbe found in two distant clean rooms

November 7, 2013 10:46 am | News | Comments

A rare, recently discovered microbe that survives on very little to eat has been found in two places on Earth: spacecraft clean rooms in Florida and South America. Some other microbes have been discovered in a spacecraft clean room and found nowhere else, but none previously had been found in two different clean rooms and nowhere else.

Advertisement

Less toxic metabolites, more chemical product

October 29, 2013 1:27 pm | News | Comments

The first dynamic regulatory system that prevents the build-up of toxic metabolites in engineered microbes has been reported by a team of researchers with the Joint BioEnergy Institute (JBEI). The JBEI researchers used their system to double the production in Escherichia coli (E. coli) of amorphadiene, a precursor to the premier antimalarial drug artemisinin.

Radical recoding tests limits of genetic reprogramming

October 17, 2013 2:33 pm | News | Comments

In two parallel projects, researchers at the Wyss Institute for Biologically Inspired Engineering have created new genomes inside the bacterium E. coli in ways that could open new possibilities for increasing flexibility, productivity and safety in biotechnology. In the first project, researchers created a novel genome, the first-ever entirely genomically recoded organism. They then greatly expanded genetic changes in the second project.

Separating the good from the bad in bacteria

October 17, 2013 7:39 am | by Jennifer Chu, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have developed a new microfluidic device that could speed the monitoring of bacterial infections associated with cystic fibrosis and other diseases. The new microfluidic chip is etched with tiny channels, each resembling an elongated hourglass with a pinched midsection. Researchers injected bacteria through one end of each channel, and observed how cells travel from one end to the other.

Beyond antibiotics: PPMOs offer new approach to bacterial infection

October 16, 2013 8:37 am | News | Comments

Researchers at Oregon State Univ. and other institutions announced the successful use of a new type of antibacterial agent called a PPMO, which appears to function as well or better than an antibiotic, but may be more precise and also solve problems with antibiotic resistance. In animal studies, one form of PPMO showed significant control of two strains of Acinetobacter, a group of bacteria of global concern.

Scientists help identify possible botulism blocker

October 14, 2013 10:10 am | News | Comments

U.S. and German scientists have decoded a key molecular gateway for the toxin that causes botulism, pointing the way to treatments that can keep the food-borne poison out of the bloodstream. The study leaders created a 3-D crystal model of a complex protein compound in the botulinum neurotoxin. This compound binds to the inner lining of the small intestine and allows passage of the toxin into the bloodstream.

Advertisement

Team uses a cellulosic biofuels byproduct to increase ethanol yield

October 9, 2013 8:37 am | News | Comments

Scientists report in Nature Communications that they have engineered yeast to consume acetic acid, a previously unwanted byproduct of the process of converting plant leaves, stems and other tissues into biofuels. The innovation increases ethanol yield from lignocellulosic sources by about 10%.

Growing bacteria keep time, know their place

October 8, 2013 4:41 pm | News | Comments

Working with a synthetic gene circuit designed to coax bacteria to grow in a predictable ring pattern, Duke Univ. scientists have revealed an underappreciated contributor to natural pattern formation: time. A series of experiments published by the Duke team show that their engineered gene circuit functions as a timing mechanism, triggering a predictable ring growth pattern that adjusts to the size of its environment.

Working together: Bacteria join forces to produce electricity

October 8, 2013 9:28 am | by Richard Harth, Science Writer, Biodesign Institute | News | Comments

Bacterial cells use an impressive range of strategies to grow, develop and sustain themselves. Despite their tiny size, these specialized machines interact with one another in intricate ways. In new research conducted at Arizona State Univ.’s Biodesign Institute, researchers explore the relationships of two important bacterial forms, demonstrating their ability to produce electricity by coordinating their metabolic activities.

Innovative approach could end sleeping sickness

October 7, 2013 9:18 am | News | Comments

A tag team of two bacteria, one of them genetically modified, has a good chance to reduce or even eliminate the deadly disease African trypanosomiasis, or sleeping sickness, researchers at Oregon State Univ. conclude in a recent mathematical modeling study. African trypanosomiasis, caused by a parasite carried by the tsetse fly, infects 30,000 people in sub-Saharan Africa each year and is almost always fatal without treatment.

How meningitis bacteria slip under the radar

September 26, 2013 9:26 am | News | Comments

Scientists have discovered a natural temperature sensor in a type of bacteria that causes meningitis and sepsis. The sensor allows the bacteria to evade the body’s immune response, leading to life-threatening infections. The Oxford Univ. team found that increasing temperature causes the bacteria to make more of a protective layer that surrounds the bacterium like an 'invisibility cloak' and helps it evade detection by the immune system.

Advertisement

New study finds “microbial clock” may help determine time of death

September 25, 2013 9:04 am | News | Comments

An intriguing study led by the Univ. of Colorado Boulder may provide a powerful new tool in the quiver of forensic scientists attempting to determine the time of death in cases involving human corpses: a microbial clock. The clock is essentially the lock-step succession of bacterial changes that occur postmortem as bodies move through the decay process.

Researchers determine protein structure for new antimicrobial target

September 9, 2013 7:57 am | News | Comments

Growing concern about bacterial resistance to existing antibiotics has created strong interest in new approaches for therapeutics able to battle infections. The work of an international team of researchers that recently solved the structure of a key bacterial membrane protein could provide a new target for drug and vaccine therapies able to battle one important class of bacteria.

Material in dissolvable sutures could treat brain infections

August 29, 2013 2:59 pm | News | Comments

A plastic material already used in absorbable surgical sutures and other medical devices shows promise for continuous administration of antibiotics to patients with brain infections, scientists are reporting in a new study. Use of the material, placed directly on the brain’s surface, could reduce the need for weeks of costly hospital stays now required for such treatment.

Virus Power

August 28, 2013 8:59 am | Award Winners

The worldwide market for portable electronic devices is quickly growing. These devices are predominantly battery-driven, and a challenge looms for maintaining, charging and disposing of these millions of batteries. Lawrence Berkeley National Laboratory’s Bacteriophage Power Generator offers a potential alternative.

Pollutant-eating bacteria not so rare

August 27, 2013 8:12 am | News | Comments

Dioxane, a chemical in wide industrial use, has an enemy in naturally occurring bacteria that remove it from the environment. Researchers at Rice Univ. have found that these bacteria are more abundant at spill sites than once thought. They are designing tools to help environmental engineers determine the best way to clean up a contaminated site.

How quickly can a bacterium grow?

August 27, 2013 8:02 am | by Anne Trafton, MIT News Office | News | Comments

All living things must obey the laws of physics, including the second law of thermodynamics. Highly ordered cells and organisms appear to contradict this principle, but they actually do conform because they generate heat that increases the universe’s overall entropy. A Massachusetts Institute of Technology physicist mathematically modeled the replication of E. coli bacteria and found that the process is nearly as efficient as possible.

Tuberculosis genomes portray secrets of pathogen’s success

August 22, 2013 8:07 am | News | Comments

By any measure, tuberculosis (TB) is a wildly successful pathogen. It infects as many as two billion people in every corner of the world, with a new infection of a human host estimated to occur every second. Now, thanks to a new analysis of dozens of tuberculosis genomes gathered from around the world, scientists are getting a more detailed picture of why TB is so prevalent and how it evolves to resist countermeasures. 

A durable, bacteria-killing surface for hospitals

August 20, 2013 12:13 pm | News | Comments

Scientists at Switzerland have developed a new method for making antimicrobial surfaces that can eliminate bacteria under a minute. The breakthrough relies on a new sputtering technique that uses a highly ionized plasma to, for the first time, deposit antibacterial titanium oxide and copper films on 3-D polyester surfaces. This promotes the production of free radicals, which are powerful natural bactericides.

Microbial team turns corn stalks, leaves into better biofuel

August 20, 2013 7:46 am | News | Comments

A fungus and E. coli bacteria have joined forces to turn tough, waste plant material into isobutanol, a biofuel that matches gasoline's properties better than ethanol. Univ. of Michigan research team members said the principle also could be used to produce other valuable chemicals such as plastics.

Spaceflight alters bacterial social networks

August 15, 2013 3:03 pm | by Gianine M. Figliozzi, NASA Ames Research Center | News | Comments

In two NASA-funded studies, biofilms made by the bacteria Pseudomonas aeruginosa were cultured on Earth and aboard space shuttle Atlantis in 2010 and 2011 to determine the impact of microgravity on their behavior. After comparing the biofilms grown on the ground with those grown on space station-bound shuttles, study results show for the first time that spaceflight changes the behavior of bacterial communities.

Biophysicists zoom in on pore-forming toxin

August 15, 2013 7:43 am | News | Comments

A new study by Rice Univ. biophysicists offers the most comprehensive picture yet of the molecular-level action of melittin, the principal toxin in bee venom. The research could aid in the development of new drugs that use a similar mechanism as melittin’s to attack cancer and bacteria.

High-angle helix helps bacteria swim

August 13, 2013 8:37 am | News | Comments

It’s counterintuitive but true: Some microorganisms that use flagella for locomotion are able to swim faster in gel-like fluids such as mucus. Research engineers at Brown Univ. have figured out why. It's the angle of the coil that matters.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading