Advertisement
Bacteria
Subscribe to Bacteria
View Sample

FREE Email Newsletter

Scientists stitch up photosynthetic megacomplex

December 2, 2013 9:23 am | News | Comments

When sunlight strikes a photosynthesizing organism, energy flashes between proteins just beneath its surface until it is trapped as separated electric charges. Improbable as it may seem, these tiny hits of energy eventually power the growth and movement of all plants and animals. They are literally the sparks of life.

Newly identified protein provides target for antibiotic-resistant hospital bacterium

November 27, 2013 8:49 am | News | Comments

Researchers have made inroads into tackling a bacterium that plagues hospitals and is highly resistant to most antibiotics. They determined the 3-D structure and likely function of a new protein in this common bacterium that attacks those with compromised immune systems.

Scientists capture “redox moments” in living cells

November 25, 2013 8:27 am | News | Comments

Scientists have charted a significant signaling network in a tiny organism that's big in the world of biofuels research. The findings about how a remarkably fast-growing organism conducts its metabolic business bolster scientists' ability to create biofuels using the hardy microbe Synechococcus, which turns sunlight into useful energy.

Advertisement

Scientists find powerful tool for genetic engineering

November 22, 2013 10:54 am | News | Comments

Viruses can not only cause illnesses in humans, they also infect bacteria. Bacteria protect themselves with a kind of immune system that detects and “chops up” foreign DNA. Scientists have now shown that the dual-RNA guided enzyme Cas9 which is involved in the process has developed independently in various strains of bacteria. This enhances the potential of exploiting the bacterial immune system for genome engineering.

Converting natural gas to liquid transportation fuels via biological organisms

November 18, 2013 8:17 am | News | Comments

Researchers at Sandia National Laboratories will use their expertise in protein expression, enzyme engineering and high-throughput assays as part of a multiproject, $34 million effort by the Advanced Research Projects Agency-Energy aimed at developing advanced biocatalyst technologies that can convert natural gas to liquid fuel for transportation.

Building nanomachines in biological outer space

November 15, 2013 7:41 am | News | Comments

Univ. of Cambridge scientists have uncovered the mechanism by which bacteria build their surface propellers (flagella). The results demonstrate how the mechanism is powered by the subunits themselves as they link in a chain that is pulled to the flagellum tip. Previously, scientists thought that the building blocks for flagella were either pushed or diffused from the flagellum base.

Better batteries through biology?

November 13, 2013 7:30 am | by David L. Chandler, MIT News Office | News | Comments

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges.

Evidence of 3.5 billion-year-old bacterial ecosystems found in Australia

November 12, 2013 3:08 pm | News | Comments

Earth’s oldest sedimentary rocks are not only rare, but also almost always altered by hydrothermal and tectonic activity. The Pilbara district in Australia is a rare exception. A new study has revealed the well-preserved remnants of a complex ecosystem in a nearly 3.5 billion-year-old sedimentary rock sequence.

Advertisement

Bacteria may allow animals to send quick, voluminous messages

November 11, 2013 3:41 pm | News | Comments

Twitter clips human thoughts to a mere 140 characters. Animals’ scent posts may be equally as short, relatively speaking, yet they convey an encyclopedia of information about the animals that left them. Recent research show that the detailed scent posts of hyenas are, in part, products of symbiotic bacteria, microbes that have a mutually beneficial relationship with their hosts.

Rare new microbe found in two distant clean rooms

November 7, 2013 10:46 am | News | Comments

A rare, recently discovered microbe that survives on very little to eat has been found in two places on Earth: spacecraft clean rooms in Florida and South America. Some other microbes have been discovered in a spacecraft clean room and found nowhere else, but none previously had been found in two different clean rooms and nowhere else.

Less toxic metabolites, more chemical product

October 29, 2013 1:27 pm | News | Comments

The first dynamic regulatory system that prevents the build-up of toxic metabolites in engineered microbes has been reported by a team of researchers with the Joint BioEnergy Institute (JBEI). The JBEI researchers used their system to double the production in Escherichia coli (E. coli) of amorphadiene, a precursor to the premier antimalarial drug artemisinin.

Radical recoding tests limits of genetic reprogramming

October 17, 2013 2:33 pm | News | Comments

In two parallel projects, researchers at the Wyss Institute for Biologically Inspired Engineering have created new genomes inside the bacterium E. coli in ways that could open new possibilities for increasing flexibility, productivity and safety in biotechnology. In the first project, researchers created a novel genome, the first-ever entirely genomically recoded organism. They then greatly expanded genetic changes in the second project.

Separating the good from the bad in bacteria

October 17, 2013 7:39 am | by Jennifer Chu, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have developed a new microfluidic device that could speed the monitoring of bacterial infections associated with cystic fibrosis and other diseases. The new microfluidic chip is etched with tiny channels, each resembling an elongated hourglass with a pinched midsection. Researchers injected bacteria through one end of each channel, and observed how cells travel from one end to the other.

Advertisement

Beyond antibiotics: PPMOs offer new approach to bacterial infection

October 16, 2013 8:37 am | News | Comments

Researchers at Oregon State Univ. and other institutions announced the successful use of a new type of antibacterial agent called a PPMO, which appears to function as well or better than an antibiotic, but may be more precise and also solve problems with antibiotic resistance. In animal studies, one form of PPMO showed significant control of two strains of Acinetobacter, a group of bacteria of global concern.

Scientists help identify possible botulism blocker

October 14, 2013 10:10 am | News | Comments

U.S. and German scientists have decoded a key molecular gateway for the toxin that causes botulism, pointing the way to treatments that can keep the food-borne poison out of the bloodstream. The study leaders created a 3-D crystal model of a complex protein compound in the botulinum neurotoxin. This compound binds to the inner lining of the small intestine and allows passage of the toxin into the bloodstream.

Team uses a cellulosic biofuels byproduct to increase ethanol yield

October 9, 2013 8:37 am | News | Comments

Scientists report in Nature Communications that they have engineered yeast to consume acetic acid, a previously unwanted byproduct of the process of converting plant leaves, stems and other tissues into biofuels. The innovation increases ethanol yield from lignocellulosic sources by about 10%.

Growing bacteria keep time, know their place

October 8, 2013 4:41 pm | News | Comments

Working with a synthetic gene circuit designed to coax bacteria to grow in a predictable ring pattern, Duke Univ. scientists have revealed an underappreciated contributor to natural pattern formation: time. A series of experiments published by the Duke team show that their engineered gene circuit functions as a timing mechanism, triggering a predictable ring growth pattern that adjusts to the size of its environment.

Working together: Bacteria join forces to produce electricity

October 8, 2013 9:28 am | by Richard Harth, Science Writer, Biodesign Institute | News | Comments

Bacterial cells use an impressive range of strategies to grow, develop and sustain themselves. Despite their tiny size, these specialized machines interact with one another in intricate ways. In new research conducted at Arizona State Univ.’s Biodesign Institute, researchers explore the relationships of two important bacterial forms, demonstrating their ability to produce electricity by coordinating their metabolic activities.

Innovative approach could end sleeping sickness

October 7, 2013 9:18 am | News | Comments

A tag team of two bacteria, one of them genetically modified, has a good chance to reduce or even eliminate the deadly disease African trypanosomiasis, or sleeping sickness, researchers at Oregon State Univ. conclude in a recent mathematical modeling study. African trypanosomiasis, caused by a parasite carried by the tsetse fly, infects 30,000 people in sub-Saharan Africa each year and is almost always fatal without treatment.

How meningitis bacteria slip under the radar

September 26, 2013 9:26 am | News | Comments

Scientists have discovered a natural temperature sensor in a type of bacteria that causes meningitis and sepsis. The sensor allows the bacteria to evade the body’s immune response, leading to life-threatening infections. The Oxford Univ. team found that increasing temperature causes the bacteria to make more of a protective layer that surrounds the bacterium like an 'invisibility cloak' and helps it evade detection by the immune system.

New study finds “microbial clock” may help determine time of death

September 25, 2013 9:04 am | News | Comments

An intriguing study led by the Univ. of Colorado Boulder may provide a powerful new tool in the quiver of forensic scientists attempting to determine the time of death in cases involving human corpses: a microbial clock. The clock is essentially the lock-step succession of bacterial changes that occur postmortem as bodies move through the decay process.

Researchers determine protein structure for new antimicrobial target

September 9, 2013 7:57 am | News | Comments

Growing concern about bacterial resistance to existing antibiotics has created strong interest in new approaches for therapeutics able to battle infections. The work of an international team of researchers that recently solved the structure of a key bacterial membrane protein could provide a new target for drug and vaccine therapies able to battle one important class of bacteria.

Material in dissolvable sutures could treat brain infections

August 29, 2013 2:59 pm | News | Comments

A plastic material already used in absorbable surgical sutures and other medical devices shows promise for continuous administration of antibiotics to patients with brain infections, scientists are reporting in a new study. Use of the material, placed directly on the brain’s surface, could reduce the need for weeks of costly hospital stays now required for such treatment.

Virus Power

August 28, 2013 8:59 am | Award Winners

The worldwide market for portable electronic devices is quickly growing. These devices are predominantly battery-driven, and a challenge looms for maintaining, charging and disposing of these millions of batteries. Lawrence Berkeley National Laboratory’s Bacteriophage Power Generator offers a potential alternative.

Pollutant-eating bacteria not so rare

August 27, 2013 8:12 am | News | Comments

Dioxane, a chemical in wide industrial use, has an enemy in naturally occurring bacteria that remove it from the environment. Researchers at Rice Univ. have found that these bacteria are more abundant at spill sites than once thought. They are designing tools to help environmental engineers determine the best way to clean up a contaminated site.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading