Advertisement
Bacteria
Subscribe to Bacteria
View Sample

FREE Email Newsletter

Scientists track evolution of a superbug

March 18, 2014 8:59 am | News | Comments

Using genome sequencing, National Institutes of Health scientists and their colleagues have tracked the evolution of the antibiotic-resistant bacterium Klebsiella pneumoniae sequence type 258 (ST258), an important agent of hospital-acquired infections. Their results promise to help guide the development of new strategies to diagnose, prevent and treat this emerging public health threat.

Bacterial reporters that get the scoop

March 18, 2014 7:55 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

It's a jungle in there. In the tightly woven ecosystem of the human gut, trillions of bacteria compete with each other on a daily basis while they sense and react to signals from the immune system, ingested food and other bacteria. Problems arise when bad gut bugs overtake friendly ones, or when the immune system is thrown off balance.

An equation to describe the competition between genes

March 17, 2014 8:08 am | by Kimm Fesenmaier, Caltech | News | Comments

In biology, scientists typically conduct experiments first, and then develop mathematical or computer models afterward to show how the collected data fit with theory. In his work, Rob Phillips flips that practice on its head. The Caltech biophysicist tackles questions in cellular biology as a physicist would—by first formulating a model that can make predictions and then testing those predictions.

Advertisement

In the laboratory, scientists coax E. coli to resist radiation damage

March 17, 2014 7:45 am | News | Comments

Capitalizing on the ability of an organism to evolve in response to punishment from a hostile environment, scientists have coaxed the model bacterium Escherichia coli to dramatically resist ionizing radiation and, in the process, reveal the genetic mechanisms that make the feat possible. The study provides evidence that just a handful of genetic mutations give E. coli the capacity to withstand doses of radiation.

Research update: Battling infection with microbes

March 13, 2014 8:19 am | by Jessica Stoller-Conrad, Caltech | News | Comments

The human relationship with microbial life is complicated. At almost any supermarket, you can pick up both antibacterial soap and probiotic yogurt during the same shopping trip. Although there are types of bacteria that can make us sick, a California Institute of Technology team is most interested in the thousands of other bacteria, many already living inside our bodies, that actually keep us healthy.

Sweet smell of sustainability

March 11, 2014 8:34 am | by Andy Fell, UC Davis News Service | News | Comments

Fresh banana, a waft of flowers, blueberry: the scents in Shota Atsumi's laboratory in the Univ. of California, Davis Dept. of Chemistry are a little sweeter than most. That's because Atsumi and his team are engineering bacteria to make esters, molecules widely used as scents and flavorings, and also as basic feedstock for chemical processes from paints to fuels.

Synthetic biologists shine light on genetic circuit analysis

March 10, 2014 7:56 am | Videos | Comments

In a significant advance for the growing field of synthetic biology, Rice Univ. bioengineers have created a toolkit of genes and hardware that uses colored lights and engineered bacteria to bring both mathematical predictability and cut-and-paste simplicity to the world of genetic circuit design.

Chemists discover new class of antibiotics

March 9, 2014 11:43 pm | News | Comments

A team of Univ. of Notre Dame researchers have discovered a new class of antibiotics to fight bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant bacteria. Called oxadiazoles, the new class was discovered through in silico (by computer) screening and has shown promise in the treatment of MRSA in mouse models of infection.  

Advertisement

Pigment or bacteria? Researchers re-examine the idea of “color” in fossil feathers

March 7, 2014 8:33 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Paleontologists studying fossilized feathers have proposed that the shapes of certain microscopic structures inside the feathers can tell us the color of ancient birds. But new research from North Carolina State Univ. demonstrates that it is not yet possible to tell if these structures, thought to be melanosomes, are what they seem, or if they are merely the remnants of ancient bacteria.

Microbial detection array detects plague in ancient human remains

March 6, 2014 10:40 am | by Stephen P Wampler, Lawrence Livermore National Laboratory | News | Comments

Scientists who study past pandemics, such as the 14th-century Black Death that devastated much of Europe, might soon be turning to an innovative biological detection technology for some extra help. The apparent first use of this technology, known as a microarray, for studying pathogens from ancient DNA, was reported by a team of scientists in Scientific Reports.

Disease-causing bacterial invaders aided by failure of immune system switch

February 27, 2014 1:06 pm | by Bill Hathaway, Yale Univ. | News | Comments

Immune system defenses against dangerous bacteria in the gut can be breached by turning off a single molecular switch that governs production of the protective mucus lining our intestinal walls, according to a study led by researchers at Yale Univ., the Univ. of British Columbia and the Weizmann Institute of Science.

Faster anthrax detection could speed bioterror response

February 27, 2014 12:47 pm | News | Comments

Shortly following the 9/11 terror attack in 2001, letters containing anthrax spores were mailed to news outlets and government buildings killing five people and infecting 17 others. According to a 2012 report, the bioterrorism event cost $3.2 million in cleanup and decontamination. At the time, no testing system was in place that officials could use to screen the letters.

Need a water filter? Peel a tree branch

February 27, 2014 7:39 am | by Jennifer Chu, MIT News Office | News | Comments

If you’ve run out of drinking water during a lakeside camping trip, there’s a simple solution: Break off a branch from the nearest pine tree, peel away the bark and slowly pour lake water through the stick. The improvised filter should trap any bacteria, producing fresh, uncontaminated water. In fact, a team has discovered that this low-tech filtration system can produce up to 4 L of drinking water a day.

Advertisement

Going with the flow makes bacteria stick

February 24, 2014 7:32 am | by David L. Chandler, MIT News Office | News | Comments

In a surprising new finding, researchers have discovered that bacterial movement is impeded in flowing water, enhancing the likelihood that the microbes will attach to surfaces. The new work could have implications for the study of marine ecosystems, and for our understanding of how infections take hold in medical devices.

Scientists study how marine bacteria release cloud-making compound

February 19, 2014 2:30 pm | by Alan Flurry, Univ. of Georgia | News | Comments

Univ. of Georgia (UGA) marine scientists are uncovering the mechanisms that regulate the natural production of an anti-greenhouse gas. A new $2 million National Science Foundation grant will allow the UGA-led research group to further document how genes in ocean microbes transform sulfur into clouds in the Earth's atmosphere.

Uncovering the secrets of tularemia

February 18, 2014 8:26 am | by Stephen P Wampler, Lawrence Livermore National Laboratory | News | Comments

Tularemia is endemic in the northeastern U.S., and is considered to be a risk to biosecurity, much like anthrax or smallpox, because it has already been weaponized in various regions of the world. A postdoctoral researcher at Lawrence Livermore National Laboratory has recently described his work to uncover the secrets of the bacterium Francisella tularensis, which causes tularemia, also known as "rabbit fever."

Laser tool speeds up detection of Salmonella in food products

February 14, 2014 7:38 am | by Natalie van Hoose, Purdue Univ. | Videos | Comments

Purdue Univ. researchers have developed a laser sensor that can identify Salmonella bacteria grown from food samples about three times faster than conventional detection methods. Known as BARDOT, the machine scans bacteria colonies and generates a distinct black and white "fingerprint" by which they can be identified. BARDOT takes less than 24 hrs to pinpoint Salmonella.

Targeted Healing of the Immune System

February 9, 2014 10:00 am | by Lindsay Hock, Managing Editor | Articles | Comments

In the U.S. about 12,500 women are diagnosed with cervical cancer a year. Out of these women, about 4,500 progress into invasive cervical cancer or the end stage of the disease. This leaves about 8,000 women a year in the U.S. that are cured through existing standard of care treatment: surgery or chemotherapy/radiation. However, chemotherapy/radiation have terrible side effects in some cases.

Inner workings of a cellular nanomotor revealed

February 5, 2014 9:13 am | News | Comments

Our cells produce thousands of proteins, but more than one-third of these proteins can fulfill their function only after migrating to the outside of the cell. While it is known that protein migration occurs with the help of various “nanomotors” that push proteins out of the cell, little is known about their precise mechanical functioning. New research reveals the inner workings of one such nanomotor, called SecA, with new clarity.

Cell membrane studied as future diagnostic tool

January 31, 2014 9:27 am | News | Comments

Researchers at NIST and in Lithuania have used a NIST-developed laboratory model of a simplified cell membrane to accurately detect and measure a protein associated with a serious gynecological disease, bacterial vaginosis (BV), at extraordinarily low concentrations. The work illustrates how the artificial membrane could be used to improve disease diagnosis.

Researchers sequence world’s first butterfly bacteria, find surprises

January 31, 2014 7:54 am | News | Comments

For the first time ever, a team has sequenced the internal bacterial makeup of the three major life stages of a butterfly species, a project that showed some surprising events occur during metamorphosis. The results showed the internal bacterial diversity of the butterfly was halved when it morphed from the caterpillar to the chrysalis, or pupal stage, then doubled after the pupae turned into active adult butterflies.

Antibiotic “smart bomb” can target specific strains of bacteria

January 30, 2014 10:15 am | News | Comments

Researchers from North Carolina State Univ. have developed a de facto antibiotic “smart bomb” that can identify specific strains of bacteria and sever their DNA, eliminating the infection. The technique offers a potential approach to treat infections by multi-drug resistant bacteria.

Puzzling question in bacterial immune system answered

January 30, 2014 8:04 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A central question has been answered regarding a protein that plays an essential role in the bacterial immune system and is fast becoming a valuable tool for genetic engineering. A team of researchers has determined how the bacterial enzyme known as Cas9, guided by RNA, is able to identify and degrade foreign DNA during viral infections, as well as induce site-specific genetic changes in animal and plant cells.

Researchers tune in to protein pairs

January 27, 2014 11:25 am | News | Comments

Rice Univ. scientists have created a way to interpret interactions among pairs of task-oriented proteins that relay signals. The goal is to learn how the proteins avoid crosstalk and whether they can be tuned for better performance. Each cell contains thousands of these two-component signaling proteins, which often act as sensors and trigger the cell to act.

Getting a charge from changes in humidity

January 27, 2014 11:15 am | News | Comments

A new type of electrical generator uses bacterial spores to harness the untapped power of evaporating water, according to research conducted at the Wyss Institute of Biologically Inspired Engineering at Harvard Univ. Its developers foresee electrical generators driven by changes in humidity from sun-warmed ponds and harbors.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading