Advertisement
Bacteria
Subscribe to Bacteria

The Lead

Unique sense of “touch” gives a prolific bacterium its ability to infect anything

November 20, 2014 8:49 am | by Morgan Kelly, Office of Communications, Princeton Univ. | Videos | Comments

New research has found that one of the world's most prolific bacteria manages to afflict humans, animals and even plants by way of a mechanism not before seen in any infectious microorganism—a sense of touch. This unique ability helps make the bacteria Pseudomonas aeruginosa ubiquitous, but it also might leave these antibiotic-resistant organisms vulnerable to a new form of treatment.

Paramecia need Newton for navigation

November 19, 2014 7:36 am | by Kevin Stacey, Brown Univ. | Videos | Comments

For such humble creatures, single-celled paramecia have remarkable sensory systems. Give them a...

Bacteria become genomic tape recorders

November 13, 2014 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology (MIT) engineers have transformed the genome of the...

Boosting biogasoline production in microbes

October 28, 2014 8:53 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the on-going effort to develop advanced biofuels as a clean, green and sustainable source of...

View Sample

FREE Email Newsletter

How microbes build a powerful antibiotic

October 27, 2014 10:32 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers report in Nature that they have made a breakthrough in understanding how a powerful antibiotic agent is made in nature. Their discovery solves a decades-old mystery, and opens up new avenues of research into thousands of similar molecules, many of which are likely to be medically useful. 

New weapons against multi-drug resistance in tuberculosis

October 9, 2014 8:51 am | by Nik Papageorgiou, EPFL | News | Comments

Tuberculosis is caused by a bacterium that infects the lungs of an estimated 8.6 million people worldwide. The fight against the disease is hampered by the fact that treatment requires a long time and that the bacterium often develops multi-drug resistance. Scientists have used a sensitive screening assay to test new compounds that can be used against the bacterium, and have discovered two small molecules that show remarkable promise.

“Programmable” antibiotic uses enzyme to attack drug-resistant microbes

October 6, 2014 8:47 am | News | Comments

Microbes populating the human body have good, bad and mostly mysterious implications for our health. But when something goes wrong, we use the brute force of traditional antibiotics, which wipe out everything at once. Researchers at Rockefeller Univ. have developed a more subtle approach that uses the bacterial enzyme known as Cas9 to target a particular sequence of DNA, cutting that up but leaving more innocent microbes alone.

Advertisement

Research suggests new strategies for fighting TB

September 30, 2014 8:22 am | by Kevin Stacey, Brown Univ. | News | Comments

Over the past few years, a class of compounds called ADEPs (cyclic acyldepsipeptides) has emerged as a promising new weapon in the fight against drug-resistant bacteria. The compounds work by attaching themselves to a cellular enzyme called ClpP, which bacterial cells use to rid themselves of harmful proteins. With an ADEP attached, ClpP can’t function properly, and the bacterial cell dies.

Search for better biofuels microbes leads to the human gut

September 25, 2014 8:14 am | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Scientists have scoured cow rumens and termite guts for microbes that can efficiently break down plant cell walls for the production of next-generation biofuels, but some of the best microbial candidates actually may reside in the human lower intestine, researchers report. Their studyis the first to use biochemical approaches to confirm the hypothesis that microbes in the human gut can digest fiber.

Battling superbugs

September 23, 2014 9:13 am | by Anne Trafton, MIT | News | Comments

Each year, new strains of bacteria emerge that resist even the most powerful antibiotics, but scientists have discovered very few new classes of antibiotics in the past decade. Engineers have now turned a powerful new weapon on these superbugs. Using a gene-editing system that can disable any target gene, they have shown that they can selectively kill bacteria carrying harmful genes that confer antibiotic resistance or cause disease.

Engineered proteins stick like glue, even in water

September 22, 2014 1:46 pm | by Anne Trafton, MIT | News | Comments

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of Massachusetts Institute of Technology engineers has designed new materials that could be used to repair ships or help heal wounds and surgical incisions.

Researchers study vital on/off switches of deadly bacteria

September 19, 2014 7:50 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

No matter how many times it’s demonstrated, it’s still hard to envision bacteria as social, communicating creatures. But by using a signaling system called “quorum sensing,” these single-celled organisms radically alter their behavior to suit their population. In short, some bacteria “know” how many of them are present, and act accordingly.

Advertisement

Findings suggest how swimming cells form biofilms on surfaces

September 12, 2014 7:59 am | by Emil Venere, Purdue Univ. | News | Comments

New research findings point toward future approaches to fighting bacterial biofilms that foul everything from implantable medical devices to industrial pipes and boat propellers. Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces.

Findings suggest how swimming cells form biofilms on surfaces

September 11, 2014 1:07 pm | by Emil Venere, Purdue Univ. | News | Comments

Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces. Costs associated with biofilms affecting medical devices and industrial equipment amount to billions of dollars annually. New research reveals specifics about interactions that induce bacteria to swim close to surfaces and attach to biofilms. This may point to future approaches for fighting biofilms.

Cellular RNA can template DNA repair in yeast

September 4, 2014 7:54 am | by John Toon, Georgia Institute of Technology | News | Comments

The ability to accurately repair DNA damaged by spontaneous errors, oxidation or mutagens is crucial to the survival of cells. This repair is normally accomplished by using an identical or homologous intact sequence of DNA, but scientists have now shown that RNA produced within cells of a common budding yeast can serve as a template for repairing the most devastating DNA damage—a break in both strands of a DNA helix.

We travel with our own germs

August 29, 2014 5:24 am | by Lauran Neergaard - AP Medical Writer - Associated Press | News | Comments

Sorry, clean freaks. No matter how well you scrub your home, it's covered in bacteria from your own body. And if you pack up and move, new research shows, you'll rapidly transfer your unique microbial fingerprint to the doorknobs, countertops and floors in your new house, too.

Researchers discover why Listeria bacterium is so hard to fight

August 27, 2014 11:11 am | News | Comments

The harmful and potentially deadly bacterium Listeria is extremely good at adapting to changes. Research from Denmark uncovers exactly how cunning Listeria is and why it is so hard to fight. The discovery could help develop more efficient ways to combat the bacteria.

Advertisement

Japan lab unable to replicate stem cell results

August 27, 2014 6:26 am | by Elaine Kurtenbach - AP Business Writer - Associated Press | News | Comments

The Japanese laboratory that retracted a paper reporting a potentially major breakthrough in stem cell research said Wednesday its researchers have not managed to replicate the results. Scientists at the government-affiliated RIKEN Center for Developmental Biology said they are still trying to match results reported in two papers published by Nature in January and then retracted in July.

Bacterial nanowires not what scientists thought they were

August 19, 2014 8:28 am | by Robert Perkins, Univ. of Southern California | Videos | Comments

For the past 10 years, scientists have been fascinated by a type of “electric bacteria” that shoots out long tendrils like electric wires, using them to power themselves and transfer electricity to a variety of solid surfaces. A team led by scientists has now turned the study of these bacterial nanowires on its head, discovering that the key features in question are not pili as previously believed.

Worm virus details come to light

August 19, 2014 8:10 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have won a race to find the crystal structure of the first virus known to infect the most abundant animal on Earth. The Rice laboratories of structural biologist Yizhi Jane Tao and geneticist Weiwei Zhong, with help from researchers at Baylor College of Medicine and Washington Univ., analyzed the Orsay virus that naturally infects a certain type of nematode, the worms that make up 80% of the living animal population.

Artificial cells act like the real thing

August 18, 2014 10:55 am | News | Comments

Imitation, they say, is the sincerest form of flattery, but mimicking the intricate networks and dynamic interactions that are inherent to living cells is difficult to achieve outside the cell. Now, as published in Science, Weizmann Institute scientists have created an artificial, network-like cell system that is capable of reproducing the dynamic behavior of protein synthesis.

Team determines structure of a molecular machine that targets viral DNA for destruction

August 7, 2014 5:01 pm | News | Comments

Recent research has made a significant contribution to the understanding of a new field of DNA research that is based on a repetitive piece of DNA in the bacterial genome called a CRISPR. The study provides the first detailed blueprint for this multi-subunit “molecular machinery” that bacteria use to detect and destroy invading viruses.

Fundamental plant chemicals trace back to bacteria

August 7, 2014 4:55 pm | News | Comments

A fundamental chemical pathway that all plants use to create an essential amino acid needed by all animals to make proteins has now been traced to two groups of ancient bacteria. The pathway is also known for making hundreds of chemicals, including a compound that makes wood strong and the pigments that make red wine red.

The microbes make the sake brewery

July 25, 2014 6:56 am | News | Comments

According to recent research that marks the first time investigators have taken a microbial census of a sake brewery, the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor. This means a sake brewery has its own microbial terroir.

Diseases of another kind

July 24, 2014 8:10 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The drought that has the entire country in its grip is affecting more than the color of people’s lawns. It may also be responsible for the proliferation of a heat-loving amoeba commonly found in warm freshwater bodies, such as lakes, rivers and hot springs, which the drought has made warmer than usual this year.

Bacteria swim with bodies and flagella

July 22, 2014 8:43 am | by Kevin Stacey, Brown Univ. | News | Comments

When it comes to swimming, the bodies of some bacteria are more than just dead weight, according to new research from Brown Univ. Many bacteria swim using flagella, corkscrew-like appendages that push or pull bacterial cells like tiny propellers. It's long been assumed that the flagella do all the work during swimming, while the rest of the cell body is just along for the ride.

Entomology research fights mosquitoes with mosquitoes

July 15, 2014 4:58 pm | Videos | Comments

Researchers in Kentucky have developed a technology that uses male mosquitoes to effectively sterilize females through a naturally occurring bacterium. Called MosquitoMate, the new technology has been issued an experimental use permit for open field releases targeting the invasive Asian tiger mosquito, which is a vector for newly introduced pathogens like the Chikungunya virus.

Bacteria: A day in the life

July 11, 2014 7:50 am | by Jennifer Chu, MIT News Office | News | Comments

We are all creatures of habit, and a new study finds ocean bacteria are no exception. In a paper published in Science, researchers report that microbes in the open ocean follow predictable patterns of biological activity, such as eating, breathing and growing. Certain species are early risers, exhibiting genetic signs of respiration, metabolism and protein synthesis in the morning hours, while others rouse to action later in the day.

When faced with some sugars, bacteria can be picky eaters

July 9, 2014 8:31 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and the Univ. of Minnesota have found, for the first time, that genetically identical strains of bacteria can respond very differently to the presence of sugars and other organic molecules in the environment, with some individual bacteria devouring the sugars and others ignoring it.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading