Advertisement
Bacteria
Subscribe to Bacteria

The Lead

Brain tumor cells decimated by mitochondrial 'smart bomb'

March 24, 2015 10:25 am | by Houston Methodist | News | Comments

An experimental drug that attacks brain tumor tissue by crippling the cells' energy source called the mitochondria has passed early tests in animal models and human tissue cultures, say Houston Methodist scientists.

Mapping redox switches in cyanobacteria advances use as biofuel

March 20, 2015 8:19 am | by Pacific Northwest National Laboratory | News | Comments

Chemical reactions involving reduction and oxidation, or redox, play a key role in regulating...

A better way to study the stomach flu

March 17, 2015 7:52 am | by Jade Boyd, Rice Univ. | News | Comments

Rice Univ. bioengineers are teaming with colleagues from Baylor College of Medicine and MD...

Permafrost’s turn on the microbes

March 4, 2015 5:16 pm | by Mary Beckman, PNNL | News | Comments

As the Arctic warms, tons of carbon locked away in Arctic tundra will be transformed into the...

View Sample

FREE Email Newsletter

Experiment and theory unite in debate over microbial nanowires

March 4, 2015 11:12 am | by Janet Lathrop, Univ. of Massachusetts, Amherst | News | Comments

Scientific debate has been hot lately about whether microbial nanowires, the specialized electrical pili of the mud-dwelling anaerobic bacterium Geobacter sulfurreducens, truly possess metallic-like conductivity as its discoverers claim. But now a Univ. of Massachusetts Amherst team says they settled the dispute between theoretical and experimental scientists by devising a combination of new experiments and better theoretical modeling.

Unlocking the key to immunological memory in bacteria

March 2, 2015 11:41 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful genome editing tool may soon become even more powerful. Researchers with the Lawrence Berkeley National Laboratory have unlocked the key to how bacteria are able to “steal” genetic information from viruses and other foreign invaders for use in their own immunological memory system.

First detailed microscopy evidence of bacteria at the lower size limit of life

March 2, 2015 8:08 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists have captured the first detailed microscopy images of ultra-small bacteria that are believed to be about as small as life can get. The existence of ultra-small bacteria has been debated for two decades, but there hasn’t been a comprehensive electron microscopy and DNA-based description of the microbes until now.

Advertisement

Long-term nitrogen fertilizer use disrupts plant-microbe mutualisms

February 24, 2015 7:56 am | by Diana Yates, Life Sciences Editor, Univ. of Illinois | News | Comments

When exposed to nitrogen fertilizer over a period of years, nitrogen-fixing bacteria called rhizobia evolve to become less beneficial to legumes, researchers report in a new study. These findings, reported in Evolution, may be of little interest to farmers, who generally grow only one type of plant and can always add more fertilizer to boost plant growth.

Virus-cutting enzyme helps bacteria remember a threat

February 20, 2015 12:33 pm | by Wynne Parry, Rockefeller Univ. | News | Comments

Bacteria may not have brains, but they do have memories, at least when it comes to viruses that attack them. Many bacteria have a molecular immune system which allows these microbes to capture and retain pieces of viral DNA that they have encountered in the past, in order to recognize and destroy it when it shows up again.

Rivers can be a source of antibiotic resistance

February 13, 2015 2:43 pm | by Univ. or Warwick | News | Comments

Rivers and streams could be a major source of antibiotic resistance in the environment. The discovery comes following a study on the Thames river by scientists at the Univ. of Warwick and the Univ. of Exeter. The study found that greater numbers of resistant bacteria exist close to some waste water treatment works, and that these plants are likely to be responsible for at least half of the increase observed.

Bacterial armor holds clues for self-assembling nanostructures

February 13, 2015 8:35 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine thousands of copies of a single protein organizing into a coat of chainmail armor that protects the wearer from harsh and ever-changing environmental conditions. That is the case for many microorganisms. In a new study, researchers with Lawrence Berkeley National Laboratory have uncovered key details in this natural process that can be used for the self-assembly of nanomaterials into complex 2- and 3-D structures.

Dead Zones Aid Oyster Disease

February 12, 2015 7:00 am | by Smithsonian | News | Comments

In shallow waters around the world, where nutrient pollution runs high, oxygen levels can plummet to nearly zero at night. Oysters living in these zones are far more likely to pick up the lethal Dermo disease.

Advertisement

Non-stick material joins portfolio of slippery surface technologies

February 10, 2015 4:16 pm | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

More than 80% of microbial infections in the human body are caused by a build–up of bacteria, according to the National Institutes of Health. Bacteria cells gain a foothold in the body by accumulating and forming into adhesive colonies called biofilms, which help them to thrive and survive but cause infections and associated life–threatening risks to their human hosts.

Getting yeast to pump up the protein production

February 3, 2015 11:43 am | by Amanda Morris, Northwestern Univ. | News | Comments

From manufacturing life-saving biopharmaceuticals to producing energy-efficient biofuels, the cost-effective production of proteins will be essential to revolutionizing the future of health care and energy. For years, scientists have turned to yeast as a quick and inexpensive way to mass-produce proteins for a variety of useful products. Now Northwestern Univ. has found a way to gather more protein without making the yeast produce more.

Biologists partner bacterium with nitrogen gas to produce more, cleaner bioethanol

February 3, 2015 7:56 am | by Stephen Chaplin, Indiana Univ. | News | Comments

Indiana Univ. biologists believe they have found a faster, cheaper and cleaner way to increase bioethanol production by using nitrogen gas, the most abundant gas in Earth’s atmosphere, in place of more costly industrial fertilizers. The discovery could save the industry millions of dollars and make cellulosic ethanol more competitive with corn ethanol and gasoline.

Cyanobacterium found in algae collection holds promise for biotech applications

February 2, 2015 10:53 am | by Diana Lutz, Washington Univ. in St. Louis | News | Comments

Cyanobacteria, bacteria that obtain their energy through photosynthesis, are of considerable interest as bio-factories, organisms that could be harnessed to generate a range of industrially useful products. Part of their appeal is that they can grow on sunlight and carbon dioxide alone and thus could contribute to lowering greenhouse gas emissions and moving away from a petrochemical-based economy.

Trust your gut

January 23, 2015 9:01 am | by Laura Bailey, Univ. of Michigan | News | Comments

E. coli usually brings to mind food poisoning and beach closures, but researchers recently discovered a protein in E. coli that inhibits the accumulation of potentially toxic amyloids, a hallmark of diseases such as Parkinson's. Amyloids are formed by proteins that misfold and group together, and when amyloids assemble at the wrong place or time, they can damage brain tissue and cause cell death.

Advertisement

Biological safety lock for genetically modified organisms

January 22, 2015 1:17 pm | by Stephanie Dutchen, Harvard Medical School | News | Comments

The creation of genetically modified and entirely synthetic organisms continues to generate excitement as well as worry. Such organisms are already churning out insulin and other drug ingredients, helping produce biofuels and teaching scientists about human disease. While the risks can be exaggerated to frightening effect, modified organisms do have the potential to upset natural ecosystems if they were to escape.

Study: DNA trick cripples bacteria that escape confinement

January 21, 2015 2:18 pm | by By Malcolm Ritter - AP Science Writer - Associated Press | News | Comments

Bacteria have been modified so that they die if they get out of human control, a potential step toward better management of genetically engineered organisms—perhaps including crops, researchers say. Genetically altered microbes are used now in industry to produce fuels, medicines and other chemicals. The new technique might also reduce the risk of using them outdoors, such as for cleaning up toxic spills.

New tech keeps bacteria from sticking to surfaces

January 15, 2015 9:44 am | by Krishna Ramanujan, Cornell Univ. | News | Comments

Just as the invention of non-stick pans was a boon for chefs, a new type of nanoscale surface that bacteria can’t stick to holds promise for applications in the food processing, medical and even shipping industries. The technology uses an electrochemical process called anodization to create nanoscale pores that change the electrical charge and surface energy of a metal surface.

Antibiotic kills pathogens without resistance

January 9, 2015 7:24 am | by Greg St. Martin, Northeastern Univ. | News | Comments

For years, pathogens’ resis­tance to antibi­otics has put them one step ahead of researchers, which is causing a public health crisis, according to Northeastern Uni­v. Dis­tin­guished Pro­f. Kim Lewis. But in new research, Lewis and his col­leagues present a newly dis­cov­ered antibi­otic that elimi­nates pathogens without encoun­tering any detectable resistance.

The best offense against bacteria is a good defense

January 7, 2015 11:13 am | by Emily Caldwell, Ohio State Univ. | News | Comments

A small protein active in the human immune response can disable bacterial toxins by exploiting a property that makes the toxins effective, but also turns out to be a weakness. These toxins, which are released by bacteria, have malleable surfaces that allow them to move through porous areas of host cells to pave the way for bacteria to stay alive. But that same malleability makes the toxins vulnerable to these immune system proteins.

Predicting superbugs’ countermoves to new drugs

January 5, 2015 7:29 am | by Robin Ann Smith, Duke Univ. | News | Comments

With drug-resistant bacteria on the rise, even common infections that were easily controlled for decades are proving trickier to treat with standard antibiotics. New drugs are desperately needed, but so are ways to maximize the effective lifespan of these drugs. To accomplish that, Duke Univ. researchers used software they developed to predict a constantly evolving infectious bacterium's countermoves to one of these new drugs ahead of time.

Speeding cyanobacteria growth “brightens” biofuel’s future

January 2, 2015 9:27 am | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

Rapidly growing bacteria that live in the ocean and can manufacture their own food hold promise as host organisms for producing chemicals, biofuels and medicine. Researchers are closely studying one of these photosynthetic species of fast-growing cyanobacteria using advanced tools developed at Pacific Northwest National Laboratory to determine the optimum environment that contributes to record growth and productivity.

Sweet smell of success

December 2, 2014 8:37 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Two years ago, researchers at the Joint BioEnergy Institute engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel. Now, after further genetic modifications, they have managed to dramatically boost the E.coli’s methyl ketone production 160-fold.

Unique sense of “touch” gives a prolific bacterium its ability to infect anything

November 20, 2014 8:49 am | by Morgan Kelly, Office of Communications, Princeton Univ. | Videos | Comments

New research has found that one of the world's most prolific bacteria manages to afflict humans, animals and even plants by way of a mechanism not before seen in any infectious microorganism—a sense of touch. This unique ability helps make the bacteria Pseudomonas aeruginosa ubiquitous, but it also might leave these antibiotic-resistant organisms vulnerable to a new form of treatment.

Paramecia need Newton for navigation

November 19, 2014 7:36 am | by Kevin Stacey, Brown Univ. | Videos | Comments

For such humble creatures, single-celled paramecia have remarkable sensory systems. Give them a sharp jab on the nose, they back up and swim away. Jab them in the behind, they speed up their swimming to escape. But according to new research, when paramecia encounter flat surfaces, they’re at the mercy of the laws of physics.

Bacteria become genomic tape recorders

November 13, 2014 4:21 pm | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology (MIT) engineers have transformed the genome of the bacterium E. coli into a long-term storage device for memory. They envision that this stable, erasable and easy-to-retrieve memory will be well suited for applications such as sensors for environmental and medical monitoring.

Boosting biogasoline production in microbes

October 28, 2014 8:53 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the on-going effort to develop advanced biofuels as a clean, green and sustainable source of liquid transportation fuels, researchers at the U.S. Dept. of Energy’s Joint BioEnergy Institute have identified microbial genes that can improve both the tolerance and the production of biogasoline in engineered strains of Escherichia coli.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading