Advertisement
Analytical Instruments
Subscribe to Analytical Instruments

The Lead

New handheld device uses lasers, sound for melanoma imaging

August 7, 2014 9:39 am | News | Comments

Melanoma is the fifth most common cancer type in the United States. A new handheld device may help diagnosis and treatment efforts for the disease. It uses lasers and sound waves and is the first that can be used directly on a patient to accurately measure how deep a melanoma tumor extends into the skin.

R&D Life Sciences Overview

August 6, 2014 10:07 am | by Lindsay Hock, Managing Editor | Articles | Comments

Life science researchers are benefiting from easy-to-use, ultra-fast, automated and integrated...

Enhanced Sample Prep

August 6, 2014 9:21 am | by Lindsay Hock, Managing Editor | Articles | Comments

Sample preparation is a critical step in the analytical process. Studies report that sample prep...

Scientists solve 2,000-year-old Terracotta Army mystery

August 4, 2014 10:12 am | News | Comments

China's first emperor ordered the building of a...

View Sample

FREE Email Newsletter

New paper describes how DNA avoids damage from UV light

July 31, 2014 11:42 am | by Evelyn Boswell, Montana State Univ. | News | Comments

In the same week that the U.S. surgeon general issued a lengthy report about the dangers of skin cancer, researchers at Montana State Univ. published a paper breaking new ground on how DNA responds when exposed to ultraviolet (UV) light. The study, made possible by femtosecond lasers used for ultrafast spectroscopy, showed how DNA transfers electrons when excited by UV light.

Breakthrough in understanding of important blood protein

July 31, 2014 10:07 am | News | Comments

The human body contains a unique protein that has the unusual property of destroying itself after a few hours of existence. Called PAI-1, it affects many physiological functions, including the dissolving of coagulated blood. Recent research in Denmark has shed light on how PAI-1 changes shape. This is considered important because the protein has one of the largest shape changes in the known world of proteins.

Ames Lab home to first-in-nation DNP-NMR instrument

July 31, 2014 9:51 am | by Breehan Gerleman Lucchesi, Communications Specialist, Ames Laboratory | News | Comments

Ames Laboratory is now the home to a dynamic nuclear polarization (DNP) solid-state nuclear magnetic resonance (NMR) spectrometer that helps scientists understand how individual atoms are arranged in materials. Ames Laboratory’s DNP-NMR is the first to be used for materials science and chemistry in the U.S.

Advertisement

New assay tool characterizes plant sugar transporters

July 28, 2014 4:54 pm | News | Comments

A powerful new tool that could help advance the genetic engineering of “fuel” crops bioenergy, has been developed by researchers with the Joint BioEnergy Institute. Their new, unique assay enabled them to analyze nucleotide sugar transporter activities in Arabidopsis, a promising source of plant biomass, and characterize a family of six nucleotide sugar transporters that has never before been described.

Chemist develops x-ray vision for quality assurance

July 25, 2014 6:57 am | by Iben Julie Schmidt, Technical Univ. of Denmark | News | Comments

A new method that uses x-rays for the rapid identification of substances present in an indeterminate powder has been developed by a scientist in Denmark. The new technique has the capacity to recognize advanced biological molecules such as proteins, which makes it potentially important in both food production and the pharmaceutical industry, where it opens up new opportunities for the quality assurance of protein-based medicines.

Instrument enables high-speed chemical imaging of tissues

July 23, 2014 8:06 am | News | Comments

A research team from NIST, working with the Cleveland Clinic, has demonstrated a dramatically improved technique for analyzing biological cells and tissues based on characteristic molecular vibration "signatures." The new NIST technique is an advanced form of the widely used spontaneous Raman spectroscopy, but one that delivers signals that are 10,000 times stronger than obtained from spontaneous Raman scattering.

Reconstructing an animal’s development cell by cell

July 21, 2014 9:36 am | News | Comments

Janelia Research Campus experts have built a new computational method that can essentially automate much of the time-consuming process of reconstructing an animal's developmental building plan cell by cell. Using image data obtaining using a sophisticated form of light sheet microscopy, the tool can track the movement of cells in an animal’s body in 3-D.

Researchers create new method to draw molecules from live cells

July 18, 2014 12:30 pm | by Jeannie Kever, Univ. of Houston | News | Comments

Most current methods of identifying intracellular information result in the death of the individual cells, making it impossible to continue to gain information and assess change over time. Using magnetized carbon nanotubes, scientists in Texas have devised a new method for extracting molecules from live cells without disrupting cell development.

Advertisement

Powerful molecular sensor boosts optical signal by 100 billion times

July 15, 2014 4:45 pm | by Mike Williams, Rice Univ. | News | Comments

Scientists at Rice Univ. have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. The new imaging method uses a form of Raman spectroscopy in combination with an intricate but mass reproducible optical amplifier. Newly published tests found the device could accurately identify the composition and structure of individual molecules containing fewer than 20 atoms.

Researchers invent nanotech microchip to diagnose type-1 diabetes

July 14, 2014 9:22 am | News | Comments

A cheap, portable, microchip-based test for diagnosing type-1 diabetes could speed up diagnosis and enable studies of how the disease develops. Handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes. Until now, making the distinction has required a slow, expensive test available only in sophisticated healthcare settings.

Food allergies: A new, simple method to track down allergens

July 8, 2014 1:20 pm | News | Comments

Scientists in Switzerland have developed a fast and accurate method for determining exactly which proteins cause allergies to milk. The novel approach, which is based on a specialized form of laser desorption-ionization mass spectrometry, is highly personalized and can extend to other foods as well.

Automated dynamic light scattering benefits protein-protein quantifications

July 1, 2014 2:08 pm | Application Notes

Wyatt Technology Corp. has highlighted a recently authored study that outlines the advantages of quantifying protein-protein interactions (PPI) using automated dynamic light scattering (DLS) in high-throughput screening (HTS) mode to identify promising candidates for drug-like properties. Automated DLS helps establish the suitability of formulations before entering extended stability studies.

New light-sensitive protein enables simpler, more powerful optogenetics

June 30, 2014 9:14 am | by Anne Trafton, MIT | News | Comments

Optogenetics relies on light-sensitive proteins that can suppress or stimulate electrical signals within cells. This technique requires a light source to be implanted in the brain, where it can reach the cells to be controlled. Massachusetts Institute of Technology engineers have now developed the first light-sensitive molecule that enables neurons to be silenced noninvasively, using a light source outside the skull.

Advertisement

Fast, portable device for “on-the-go” cocaine testing

June 25, 2014 8:39 am | News | Comments

Testing for cocaine and other drugs usually involves two steps: a quick on-site prescreen, and then a more accurate confirmatory test at a distant laboratory. This process can take days or weeks—but that’s too long in many cases where public safety is at risk. Now, researchers report development of a backpack-sized device that can perform highly accurate and sensitive tests anywhere within 15 min.

Analytic technique offers arson investigators faster, more accurate results

June 18, 2014 9:04 am | by James Burrus, NIST | News | Comments

A research group at NIST has demonstrated a new method for detecting ignitable liquids that could change the way arson fires are investigated. The new process for analyzing debris for traces of fire accelerants is faster and more accurate than conventional methods and produces less waste.

Dynamic spectroscopy duo

June 17, 2014 1:34 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From allowing our eyes to see, to enabling green plants to harvest energy from the sun, photochemical reactions are ubiquitous and critical to nature. Photochemical reactions also play essential roles in high technology. Using photochemical reactions to our best advantage requires a deep understanding of the interplay between the electrons and atomic nuclei within a molecular system after that system has been excited by light.

Pittcon to sponsor International Year of Light

June 16, 2014 10:54 am | News | Comments

The Pittcon Organizing Committee, which holds the Pittcon Conference and Exposition each year, will participate in the International Year of Light initiative at the Associate Sponsor level. The United Nations General Assembly has proclaimed 2015 as the International Year of Light and Light-based Technologies. The sponsorship effort will include a variety of focused workshops and short courses in the coming year.

Music under the microscope

June 11, 2014 9:01 am | News | Comments

Researchers in Germany have converted the frequencies of droplets flowing through thin channels into musical notes. This is more than just a gimmick: The fact that droplets can be controlled so precisely that they become musical instruments means they are also of interest with regard to medical diagnostics applications.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Engineers develop mobile DNA test for HIV

June 6, 2014 7:31 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. bioengineers are developing a simple, highly accurate test to detect signs of HIV and its progress in patients in resource-poor settings. The current gold standard to diagnose HIV in infants and to monitor viral load depends on laboratory equipment and technical expertise generally available only in clinics. The new research features a nucleic acid-based test that can be performed at the site of care.

Mobile Control In the Lab

June 4, 2014 1:56 pm | by Lindsay Hock, Managing Editor | Shimadzu Scientific Instruments | Articles | Comments

The ability to adapt to changing situations is critical for today’s labs. Today, many lab equipment systems are designed with the flexibility to accommodate these needs. Time is also of utmost importance, and the ability for a researcher to walk away from their work, or monitor it on the go, is a new standard.

Miniature gas chromatograph could help farmers detect crop diseases earlier

May 29, 2014 7:55 am | by Angela Colar, Georgia Tech | News | Comments

Researchers at the Georgia Tech Research Institute are developing a micro gas chromatograph for early detection of diseases in crops. About the size of a 9-V battery, the technology’s portability could give farmers just the tool they need to quickly evaluate the health of their crops and address any possible threats immediately, potentially increasing yield by reducing crop losses.

Compact and extremely small-scale incubator microscope to examine cells in time lapse

May 23, 2014 12:38 pm | News | Comments

Biologists and doctors rely heavily on incubators and microscopes. Researchers have invented a new type of microscope that combines the functions of both these tools in a compact system. The incubator microscope is ideally suited for time-lapse examination over a number of weeks and for automatic observation of cell cultures. No bigger than a soda can, it costs 30 times less than buying an incubator and a microscope separately.

Ultra-sensitive nanochip detects cancer early

May 19, 2014 1:02 pm | News | Comments

A new  “lab-on-a-chip” platform developed at the Institute of Photonic Sciences in Spain is capable of detecting detect very low concentrations of protein cancer markers, enabling diagnoses of the disease in its earliest stages. The device, just a few square centimeters in size, uses recent advances in plasmonics, nano-fabrication, microfluids and surface chemistry.

Microchip-like technology allows single-cell analysis

May 14, 2014 1:52 pm | News | Comments

A U.S. and Korean research team has developed a chip-like device that could be scaled up to sort and store hundreds of thousands of individual living cells in a matter of minutes. The system is similar to a random access memory chip, but it moves cells rather than electrons.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading