Advertisement
Analytical Instruments
Subscribe to Analytical Instruments
View Sample

FREE Email Newsletter

Rapid cancer detection built on a chip

March 8, 2013 3:39 pm | News | Comments

Early detection is vital for the effective treatment of cancer. In many cases, tell-tale biomarkers are present in the bloodstream long before outward symptoms become apparent. The development of an inexpensive and rapid point-of-care diagnostic test capable of spotting such early biomarkers of disease could save many lives. A research team in Japan working on developing such a test has now produced their most sensitive microRNA detector yet.

Thermally controlled nanopores may allow detailed blood analysis

March 7, 2013 10:02 am | News | Comments

Tiny biomolecular chambers called nanopores that can be selectively heated may help doctors diagnose disease more effectively if recent research by a team at NIST proves effective. The team has pioneered work on the use of nanopores for the detection and identification of a wide range of molecules, including DNA. These nanopores mimic ion channels, the gateways by which a cell admits and expels materials.

Polymer scientists develop double switchable membrane

February 27, 2013 10:46 pm | News | Comments

Pharmaceutical residues in water can pose a danger to humans. Filtration is often very difficult as these trace substances, which are soluble in water, are so minute. Newly-developed double switchable membranes could make it possible to filter these molecules, as well as other  biomolecules such as proteins and nucleic acids. The new membranes can reduce or enlarge pore size through changes in temperature and pH value.

Advertisement

Automating Challenges Associated with Proteomics Workflows

February 26, 2013 4:16 pm | by Brian Field, Life Science Product Manager, Shimadzu Scientific Instruments, Columbia, Md. | Articles | Comments

Sample preparation workflows for mass spectrometric analysis that involve proteolysis are often labor intensive, time consuming, and user dependent. Typical proteomic workflows require enzymatic digestion, solid phase extraction, drying, and resuspension before the reversed phase liquid chromatography-mass spectrometry (LC-MS) analysis.

Rethinking Automation

February 26, 2013 4:11 pm | by Matt Kirtley, Product Manager, Agilent Technologies Inc., Santa Clara, Calif. | Articles | Comments

Until now, life science researchers had a narrow set of expectations for automation systems. The main focus of laboratory automation providers has been to develop liquid handling systems for high-throughput workflows processing very large samples numbers, primarily in screening laboratories.

Analytical trick may accelerate cancer diagnosis

February 25, 2013 7:59 am | News | Comments

Researchers at the University of Wisconsin-Madison have found a new way to accelerate a workhorse instrument that identifies proteins. The high-speed technique could help diagnose cancer sooner and point to new drugs for treating a wide range of conditions.

Explosives vapor detection technology: The new "sniff test"

February 21, 2013 8:35 am | News | Comments

A quick, accurate, and highly sensitive process to reliably detect minute traces of explosives on luggage, cargo, or traveling passengers has been demonstrated by scientists at Pacific Northwest National Laboratory. The vapor detection technology accurately detects and identifies the vapors of even very low-volatility explosives in real time at ambient temperature and without sample pre-concentration.

World's most sensitive plasmon resonance sensor inspired by ancient Roman cup

February 15, 2013 10:07 am | News | Comments

The Lycurgus cup was created by the Romans in 400 A.D. Made of a dichroic glass, the famous cup exhibits different colors depending on whether or not light is passing through it; red when lit from behind and green when lit from in front. It is also the origin of inspiration for all contemporary nanoplasmonics research—the study of optical phenomena in the nanoscale vicinity of metal surfaces. Scientists have recently used these optical characteristics to create a novel, ultra-sensitive tool for chemical, DNA, and protein analysis.

Advertisement

Why cells stick: Phenomenon extends longevity of bonds between cells

February 15, 2013 8:50 am | News | Comments

Research carried out by scientists at the Georgia Institute of Technology and The University of Manchester has revealed new insights into how cells stick to each other and to other bodily structures, an essential function in the formation of tissue structures and organs. It's thought that abnormalities in their ability to do so play an important role in a broad range of disorders, including cardiovascular disease and cancer.

Team creates MRI for the nanoscale

February 14, 2013 11:59 am | News | Comments

Magnetic resonance imaging (MRI) reveals details of living tissues, diseased organs and tumors inside the body without x-rays or surgery. What if the same technology could peer down to the level of atoms? Physicists in New York and Germany have worked together to make this type of nanoscale MRI possible. To do this, researchers used the tiny imperfections in diamond crystals known as nitrogen-vacancy centers.

Building a biochemistry lab-on-a-chip

February 13, 2013 8:04 am | News | Comments

Miniaturized laboratory-on-chip systems promise rapid, sensitive, and multiplexed detection of biological samples for medical diagnostics, drug discovery, and high-throughput screening. Using microfabrication techniques and incorporating a unique design of transistor-based heating, researchers at the University of Illinois at Urbana-Champaign are further advancing the use of silicon transistor and electronics into chemistry and biology for point-of-care diagnostics.

Secret of scent lies in molecular vibrations

January 30, 2013 4:25 pm | News | Comments

In a study designed to find out how smell is written into a molecule’s structure, scientists in England tested whether changing how a molecule vibrates on a nanoscale changes its smell. They found that molecular vibrations, rather than molecular shape, give substances their distinct smell.

CAMS used to determine biological fate of silica nanoparticles

January 4, 2013 9:48 am | News | Comments

In a study published in Nano Letters, Lawrence Livermore National Laboratory (LLNL)'s Mike Malfatti, Heather Palko, Ed Kuhn, and Ken Turteltaub report on accelerator mass spectrometry measurements used to investigate the relationship between administered dose, pharmacokinetics (PK), and long-term biodistribution of carbon 14-labeled silica nanopartocles in vivo.

Advertisement

Improving the accuracy of cancer diagnoses

December 26, 2012 8:41 am | by Anne Trafton, MIT News Office | News | Comments

Tiny calcium deposits can be a telltale sign of breast cancer. However, in the majority of cases these microcalcifications signal a benign condition. A new diagnostic procedure developed at Massachusetts Institute of Technology and Case Western Reserve University could help doctors more accurately distinguish between cancerous and noncancerous cases.

Agilent, Spain institute partner on systems biology

October 30, 2012 1:40 pm | News | Comments

Agilent Technologies, Inc.and Spain’s Centre for Omic Sciences this week announced that they will collaborate on mass spectrometry and nuclear magnetic resonance-based metabolomics, and automation applied to research in integrated systems biology.

Measuring molecules with the naked eye

October 26, 2012 1:36 pm | News | Comments

When someone develops liver cancer, the disease introduces a very subtle difference to their bloodstream, increasing the concentration of a particular molecule by just 10 parts per billion. That small shift is normally difficult to detect without sophisticated equipment, but new lab-on-a-chip technology designed at Brigham Young University can reveal the presence of ultra-low concentrations of a target molecule.

Water makes a “triple play” at membrane interfaces

October 19, 2012 9:26 am | News | Comments

Drugs that target cell function must pass through a tough gauntlet of membrane defenses. Working from the knowledge that thin water layers at the membrane surfaces play a big part in ion and small molecule transport, scientists using rapid-fire lasers in Japan have revealed that water molecules adopt three distinct local structures around model lipid monolayers. The finding could help drive drug development.

Synchrotrons play role in Nobel prize research

October 12, 2012 12:04 pm | by Glenn Roberts Jr., SLAC | News | Comments

The winners of the 2012 Chemistry Nobel Prize won for their work in revealing the structure and functioning of a key protein complex on the surface of human cells that has been a target for drug development. Their main tool for this research was X-ray crystallography, which is performed with X-ray synchrotrons. But as the researchers would discover, not all synchrotrons are created equal.   

Nanoscale drug discovery approach relies on in silico, in vivo, in vitro

October 10, 2012 10:58 am | News | Comments

Using in silico computational tools to complement the results of in vivo and in vitro experiments, researchers at Pacific Northwest National Laboratory have revealed an atomic-level understanding of the mechanism by which nanoparticles inhibit the growth and metastasis of pancreatic tumors. The findings are promising for the development of particle-based therapies.

New software is like a Rosetta Stone for spectrometry data

October 9, 2012 3:46 pm | News | Comments

After leading mass spectrometer manufacturers agreed to license technology that has enabled researchers to develop software allows scientists to easily use and share research data collected across proprietary instrument platforms. Called the ProteoWizard Toolkit, this cross-platform set of libraries and applications is expected to bolster large-scale biological research and help improve the understanding of complex diseases like cancer.

Particle Characterization System

October 3, 2012 8:02 am | Product Releases | Comments

Following the completion of a highly successful early access program, Malvern Instruments has now launched the Morphologi G3-ID particle characterization system. This fully automated system measures particle size, shape and chemical identity in a single platform.

Near-field scanning microwave microscope: Big at the nanoscale

October 1, 2012 5:52 am | News | Comments

The ability to determine the composition and physics of nanoscale materials and devices at NIST is about to improve dramatically with the arrival of a new near-field scanning microwave microscope (NSMM) design. Researchers there, using existing commercial and homemade NSMMs, have pioneered many applications, notably including determination of semiconductor dopant distribution in 2D and 3D. Now they hope to look at mechanical and magnetic resonance on the nanoscale.

New nanoparticle system finds mercury in water, fish

September 13, 2012 4:33 am | by Erin White | News | Comments

The system currently being used to test for mercury and its very toxic derivative, methyl mercury, is time-intensive, costly, and can only detect quantities at already toxic levels. Researchers at Northwestern University and in Switzerland have invented a device consisting of a strip of glass with a nanoparticle film attached that can detect heavy metals in quantities more than a million times smaller than is currently possible.

Thirty-five years later, Voyager 1 is heading for the stars

September 5, 2012 8:01 am | by Alicia Chang, AP Science Writer | News | Comments

Today marks the 35th anniversary of Voyager 1's launch to Jupiter and Saturn. Since leaving the ringed gas giant behind many years ago, Voyager 1 has rocketed toward an invisible boundary that no human spacecraft has ever ventured beyond. Scientists now say, based on instrument readings, that it is about to leave our solar system and venture into interstellar space.

Mass spectrometry makes the clinical grade

September 4, 2012 10:08 am | News | Comments

Researchers from Pacific Northwest National Laboratory have reported this week that combining two well-established analytic techniques?and adding a twist?identifies proteins from blood with as much accuracy and sensitivity as the antibody-based tests used clinically. The new mass spectrometry technique, called PRISM, should be able to speed up development of diagnostic tests and treatments based on proteins specific to certain diseases.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading