Advertisement
Analytical Instruments
Subscribe to Analytical Instruments
View Sample

FREE Email Newsletter

Imaging technique captures ever-changing world of metabolites

June 13, 2013 7:38 am | News | Comments

What would you do with a camera that can take a picture of something and tell you how new it is? If you’re a Lawrence Berkeley National Laboratory scientist, you use it to gain a better understanding of the ever-changing world of metabolites. A team of researchers has developed a mass spectrometry imaging technique that not only maps the whereabouts of individual metabolites in a biological sample, but how new the metabolites are too.

Agilent introduces advanced mass spec software

June 11, 2013 4:15 pm | News | Comments

Agilent Technologies Inc. has introduced two applications that further enhance its MassHunter Workstation software and LC-MS, GC-MS and ICP-MS instruments. These new applications empower users to rapidly create targeted screening methods for food safety and forensic analysis, and to characterize intact proteins and biosimilars for biopharmaceutical research.

Agilent demonstrates new generation of ion mobility technology

June 11, 2013 7:40 am | News | Comments

At the American Society of Mass Spectroscopy conference in Minneapolis this week, Agilent Technologies introduced analytical research findings using new ion mobility technology combined with a modified high-resolution iFunnel quadrupole-time-of-flight liquid chromatography-mass spectrometry (LC/MS) system. The prototype systems have provided significantly greater analytical detail for complex samples than high-resolution MS alone.

Advertisement

Recent Advancements in Polymer Characterization

June 6, 2013 12:17 pm | by Ed Bouvier, Manager, Advanced Materials Research Group, Mia Summers, Principal Applications Chemist, and Michael O’Leary, Principal Scientist, Chemical Materials Business Operations, Waters Corp., Milford, Mass. | Articles | Comments

Innovation in liquid chromatography instrument design and column technology over the last decade has led to substantial improvements in chromatographic throughput and resolution. This has been achieved by enabling the system to achieve pressures up to 15,000 psi, reducing the system contributions to peak broadening, and utilizing well-packed columns containing sub-2-micron particles.

New single virus detection technique yields faster diagnosis

May 30, 2013 2:29 pm | News | Comments

To test the severity of a viral infection, clinicians try to gauge how many viruses are packed into a certain volume of blood or other bodily fluid. However, the standard methods used for these tests are only able to estimate the number of viruses in a given volume of fluid. Now two independent teams have developed new optics-based methods for determining the exact viral load of a sample by counting individual virus particles.

Innovation in spectroscopy could improve greenhouse gas detection

May 15, 2013 8:37 am | News | Comments

Detecting greenhouse gases in the atmosphere could soon become far easier with the help of an innovative technique developed by a team at NIST, where scientists have overcome an issue preventing the effective use of lasers to rapidly scan samples. The team says the technique also could work for other jobs that require gas detection, including the search for hidden explosives and monitoring chemical processes in industry and the environment.

Microgravity nanomedicine experiment may go to Space Station

May 14, 2013 10:00 am | News | Comments

Nearly all drugs taken orally spike in concentration, decay quickly, and are only at their peak effectiveness for a short period of time. working on a solution―nanocapsules implanted beneath the skin that release pharmaceutical drugs through a nanochannel membrane and into the body at a sustained, steady rate. To design better nanochannels for a given drug, the team is hoping to use the International Space Station.

Hubble finds dead stars “polluted” with planet debris

May 10, 2013 9:24 am | News | Comments

NASA's Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place—the atmospheres of a pair of burned-out stars called white dwarfs. Hubble's Cosmic Origins Spectrograph observed silicon and only low levels of carbon in the white dwarfs' atmospheres. Silicon is a major ingredient of the rocky material that constitutes Earth and other solid planets in our solar system.

Advertisement

Robotic instruments provide real-time data on Maine red tide

May 8, 2013 12:36 pm | News | Comments

A robotic sensor that won an R&D 100 Award in 2009 has been put to use by Woods Hole Oceanographic Institution (WHOI) in Gulf of Maine coastal waters to monitor the way red tides behave. These harmful algal blooms, which generate a potentially fatal toxin, can be a challenge to track or predict. The Environmental Sample Processors have been remotely deployed and should simplify and enhance this effort.

An electronic nose can tell pears and apples apart

May 8, 2013 12:13 pm | News | Comments

Swedish and Spanish engineers have created a system of sensors that detects fruit odors more effectively than the human sense of smell. For now, the device, which has 32 sensors and can process scent data in real time, can distinguish between the odorous compounds emitted by pears and apples, but the system can be tailored to other applications.

New imaging technique visualizes bio-metals and molecules simultaneously

May 2, 2013 2:25 pm | by Juliette Savin, RIKEN | News | Comments

Metal elements and molecules interact in the body, but visualizing them together has always been a challenge. Researchers at RIKEN in Japan have developed a new molecular imaging technology that enables them to image bio-metals and bio-molecules at the same time in a live mouse. This new technology will enable researchers to study the complex interactions between metal elements and molecules in living organisms.

Tests on cancer cells shows them as “squishy”, yet tactically strong

April 29, 2013 8:06 am | News | Comments

To get a better understanding of metastasis, more than 95 graduate students, post docs and professors in a variety of laboratories across the U.S. subjected two cell lines to a battery of tests and measurements using more than 20 different techniques. The work has enabled a comprehensive cataloging and comparison of the physical characteristics of non-malignant and metastatic cells.

Thermo to acquire Life Technologies

April 16, 2013 7:30 am | News | Comments

Thermo Fisher Scientific Inc. and Life Technologies Corporation have signed a definitive agreement under which Thermo Fisher will acquire Life Technologies for $76.00 in cash per fully diluted common share, or approximately $13.6 billion, plus the assumption of net debt at close ($2.2 billion as of year end 2012).

Advertisement

AB SCIEX enhances software to drive micro LC

March 20, 2013 10:10 am | News | Comments

New software and service offerings to simplify and accelerate the integration of micro liquid chromatography (LC) technology into regulated bioanalytical laboratories was introduced this week by AB SCIEX. The new software module supports 21CFR Part 11 and the new IQ/OQ/PQ service to the Eksigent line of LC solutions gives research organizations a new validated approach to micro LC

Team achieves tenfold boost in ability to find proteins in cancer cells

March 19, 2013 3:59 pm | by Michelle Ma, University of Washington | News | Comments

New research offers a more comprehensive way of analyzing one cell’s unique behavior, using an array of colors to show patterns that could indicate why a cell will or won’t become cancerous. A University of Washington team has developed a new method for color-coding cells that allows them to illuminate 100 biomarkers, a ten-time increase from the current research standard

Wyss Institute, Sony DADC collaborate on Organs-on-Chips

March 19, 2013 8:01 am | News | Comments

This week, the Wyss Institute for Biologically Inspired Engineering at Harvard University and Sony DADC announced a collaboration that will harness Sony DADC's global manufacturing expertise to further advance the Institute's Organs-on-Chips technologies. Human Organs-on-Chips are research tools composed of a clear, flexible polymer about the size of a computer memory stick, and contain hollow microfluidic channels lined by living human cells

High-resolution endoscope is as thin as a human hair

March 13, 2013 10:09 am | by Andrew Myers, Stanford University | News | Comments

Engineers at Stanford have developed a prototype single-fiber endoscope that improves the resolution of these much-sought-after instruments fourfold over existing designs. This so-called micro-endoscope can resolve objects just 2.5 micrometers in size and could lead to an era of needle-thin, minimally invasive endoscopes able to view features out of reach of today’s instruments.

Rapid cancer detection built on a chip

March 8, 2013 3:39 pm | News | Comments

Early detection is vital for the effective treatment of cancer. In many cases, tell-tale biomarkers are present in the bloodstream long before outward symptoms become apparent. The development of an inexpensive and rapid point-of-care diagnostic test capable of spotting such early biomarkers of disease could save many lives. A research team in Japan working on developing such a test has now produced their most sensitive microRNA detector yet.

Thermally controlled nanopores may allow detailed blood analysis

March 7, 2013 10:02 am | News | Comments

Tiny biomolecular chambers called nanopores that can be selectively heated may help doctors diagnose disease more effectively if recent research by a team at NIST proves effective. The team has pioneered work on the use of nanopores for the detection and identification of a wide range of molecules, including DNA. These nanopores mimic ion channels, the gateways by which a cell admits and expels materials.

Polymer scientists develop double switchable membrane

February 27, 2013 10:46 pm | News | Comments

Pharmaceutical residues in water can pose a danger to humans. Filtration is often very difficult as these trace substances, which are soluble in water, are so minute. Newly-developed double switchable membranes could make it possible to filter these molecules, as well as other  biomolecules such as proteins and nucleic acids. The new membranes can reduce or enlarge pore size through changes in temperature and pH value.

Automating Challenges Associated with Proteomics Workflows

February 26, 2013 4:16 pm | by Brian Field, Life Science Product Manager, Shimadzu Scientific Instruments, Columbia, Md. | Articles | Comments

Sample preparation workflows for mass spectrometric analysis that involve proteolysis are often labor intensive, time consuming, and user dependent. Typical proteomic workflows require enzymatic digestion, solid phase extraction, drying, and resuspension before the reversed phase liquid chromatography-mass spectrometry (LC-MS) analysis.

Rethinking Automation

February 26, 2013 4:11 pm | by Matt Kirtley, Product Manager, Agilent Technologies Inc., Santa Clara, Calif. | Articles | Comments

Until now, life science researchers had a narrow set of expectations for automation systems. The main focus of laboratory automation providers has been to develop liquid handling systems for high-throughput workflows processing very large samples numbers, primarily in screening laboratories.

Analytical trick may accelerate cancer diagnosis

February 25, 2013 7:59 am | News | Comments

Researchers at the University of Wisconsin-Madison have found a new way to accelerate a workhorse instrument that identifies proteins. The high-speed technique could help diagnose cancer sooner and point to new drugs for treating a wide range of conditions.

Explosives vapor detection technology: The new "sniff test"

February 21, 2013 8:35 am | News | Comments

A quick, accurate, and highly sensitive process to reliably detect minute traces of explosives on luggage, cargo, or traveling passengers has been demonstrated by scientists at Pacific Northwest National Laboratory. The vapor detection technology accurately detects and identifies the vapors of even very low-volatility explosives in real time at ambient temperature and without sample pre-concentration.

World's most sensitive plasmon resonance sensor inspired by ancient Roman cup

February 15, 2013 10:07 am | News | Comments

The Lycurgus cup was created by the Romans in 400 A.D. Made of a dichroic glass, the famous cup exhibits different colors depending on whether or not light is passing through it; red when lit from behind and green when lit from in front. It is also the origin of inspiration for all contemporary nanoplasmonics research—the study of optical phenomena in the nanoscale vicinity of metal surfaces. Scientists have recently used these optical characteristics to create a novel, ultra-sensitive tool for chemical, DNA, and protein analysis.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading