Advertisement
Analytical Instruments
Subscribe to Analytical Instruments
View Sample

FREE Email Newsletter

Neanderthal genome project reaches its goal

December 19, 2013 7:49 pm | News | Comments

An international research team has produced a high-quality genome sequence of a Neanderthal woman from a toe bone found in 2010 by Russian archaeologists. The genome will allow detailed insights into the relationships and population history of the Neanderthals and other extinct hominin groups.

Computer models, observations inside a cell reveal RNA’s interesting “machines”

December 19, 2013 7:26 pm | by Elizabeth Dougherty, Massachusetts Institute of Technology | News | Comments

New collaborative work from computational biologists in Massachusetts and California combines computational and experimental approaches to identify biologically meaningful RNA folds. The work could open the door to a better understanding of RNA machinery, which includes the ribosome, microRNAs and riboswitches, and long noncoding RNAs whose diverse functions are only beginning to be understood.

Water in cells behaves in complex and intricate ways

December 18, 2013 7:40 am | News | Comments

In a sort of biological "spooky action at a distance," water in a cell slows down in the tightest confines between proteins and develops the ability to affect other proteins much farther away, Univ. of Michigan researchers have discovered. The finding could provide insights into how and why proteins clump together in diseases such as Alzheimer's and Parkinson's.

Advertisement

Researchers develop advanced 3-D “force microscope”

December 17, 2013 3:19 pm | News | Comments

Until recently, the microscopic study of complex membrane proteins has been restricted due to limitations of “force microscopes” that are available to researchers and the one-dimensional results these microscopes reveal. Now, researchers at the Univ. of Missouri have built a 3-D microscope that will yield unparalleled information on membrane proteins and how they interact in cells. The innovation could speed up drug development.

The synaptic mechanisms behind brain waves

December 17, 2013 12:20 am | News | Comments

How information is processed and encoded in the brain is a central question in neuroscience. But the brain's underlying synaptic mechanisms have so far remained unclear. In a recent study, researchers have discovered the synaptic mechanisms underlying oscillations in the hippocampus. Furthermore, the researchers suggest a role for these oscillations in the coding of information by the principal neurons in that area of the brain.

New tool assesses the impact of toxic agents in cells

December 10, 2013 9:21 am | News | Comments

By using optical techniques, researchers in Switzerland are now able to measure the concentration of the oxidizing substances produced by a damaged cell. This new biosensing technique for toxic agents also offers a new way to know more about the mechanisms of oxidative stress.

Bruker receives FDA clearance to market MALDI Biotyper CA System

November 27, 2013 11:52 am | News | Comments

Bruker Corp. has announced that it has been granted U.S. FDA clearance under Section 510(k) to market its MALDI Biotyper CA System in the United States for the identification of Gram negative bacterial colonies cultured from human specimens. The clearance marks progress in Bruker’s efforts to develop MALDI-TOF mass spectrometry into the most advanced platform for clinical microbiology identification.

Structure of bacterial nanowire protein hints at secrets of conduction

November 12, 2013 6:39 pm | by Mary Beckman, PNNL | News | Comments

Tiny electrical wires protrude from some bacteria and contribute to rock and dirt formation. Pacific Northwest National Laboratory researchers studying the protein that makes up one such wire have determined the protein's structure and have shown that the protein's shape and form suggest possible ways for the bacteria to shuttle electrons along the nanowire.

Advertisement

Raman: From the streets, to the lab and even your computer

November 12, 2013 9:24 am | by Lindsay Hock, Managing Editor | Thermo Fisher Scientific | Articles | Comments

Commercially available as instrumentation designed for macro-size sampling, Raman spectroscopy drew interest for providing information similar but complementary to infrared (FTIR) spectroscopy for chemical identification. In addition to chemical fingerprinting, the technique could provide molecular backbone information, materials morphology, sensitivity to symmetric bonds and the ability to analyze inorganic samples and components.

Computer-aided image analysis may offer second opinion in breast tumor diagnosis

November 4, 2013 2:19 pm | News | Comments

Researchers at the Univ. of Chicago are developing computer-aided diagnosis and quantitative image analysis methods for mammograms, ultrasounds and magnetic resonance images to identify specific tumor characteristics, including size, shape and sharpness

Analyzing hundreds of cells in a few mouse-clicks

October 30, 2013 9:37 am | News | Comments

The increasingly powerful microscopes used in biomedical imaging provide biologists with 3-D images of hundreds of cells, and cells in these images are often layered on each other. Under these conditions, it is impossible for traditional computational methods to determine the cells' properties. Researchers have developed a virtual tool that can analyze dozens of images in just an hour. This works out to hundreds of cells.

Trends in Optical Spectroscopy

October 25, 2013 11:19 am | by Olga Pawluczyk, President and CEO, P&P Optica Inc., Canada | Articles | Comments

Innovations in optical spectroscopy have helped the technology reach a point where performance previously seen only in laboratory settings can be obtained in the field with compact and easy-to-use systems. These improvements, made to detectors, software and overall design, have greatly affected instrument characteristics such as speed, miniaturization, price and reliability.

New spectrometry standard for handheld chemical detectors aids first responders

October 25, 2013 11:18 am | News | Comments

When it comes to detectors for dangerous chemicals, toxins or nefarious germs, smaller and faster is better. But size and speed must still allow for accuracy, especially when measurements by different instruments must give the same result. The recent publication of a new NIST standard provides confidence that results from handheld chemical detectors can be compared, apples-to-apples.

Advertisement

Watching the heartbeat of molecules

October 17, 2013 1:17 pm | News | Comments

A team of scientists in Europe have developed a new method of rapidly identifying different molecular species under a microscope. Their technique of coherent Raman spectro-imaging with two laser frequency combs takes a big step toward the holy grail of real-time label-free biomolecular imaging.

Separating the good from the bad in bacteria

October 17, 2013 7:39 am | by Jennifer Chu, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have developed a new microfluidic device that could speed the monitoring of bacterial infections associated with cystic fibrosis and other diseases. The new microfluidic chip is etched with tiny channels, each resembling an elongated hourglass with a pinched midsection. Researchers injected bacteria through one end of each channel, and observed how cells travel from one end to the other.

Device speeds concentration step in food-pathogen detection

October 14, 2013 1:39 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods by using hollow thread-like fibers that filter out the cells. The machine, called a continuous cell concentration device, could make it possible to routinely analyze food or water samples to screen for pathogens within a single work shift at food processing plants.

New micro water sensor can aid growers

October 11, 2013 8:44 am | by Krishna Ramanujan, Cornell University | News | Comments

Crop growers can benefit from water sensors for accurate, steady and numerous moisture readings. But current sensors are large, may cost thousands of dollars and often must be read manually. Now, Cornell Univ. researchers have developed a microfluidic water sensor within a fingertip-sized silicon chip that is a hundred times more sensitive than current devices.

Mass producing pocket laboratories

October 2, 2013 9:24 am | News | Comments

There is certainly no shortage of lab-on-a-chip devices, but in most cases manufacturers have not yet found a cost-effective way to mass produce them. Scientists are now developing a platform for series production of these pocket laboratories. The first major step is moving away from the usual injection molding or wet chemical processing techniques in favor of roll-to-roll processing.

Scientists rig hospital-grade lightweight blood flow imager on the cheap

September 27, 2013 10:16 am | News | Comments

Tracking blood flow in the laboratory is an important tool for studying ailments and is usually measured in the clinic using professional imaging equipment and techniques like laser speckle contrast imaging. Now, developers have built a new biological imaging system 50 times less expensive than standard equipment, and suitable for imaging applications outside of the laboratory.

Scientists develop human-on-a-chip to research chemical warfare agent exposure

September 26, 2013 9:39 am | News | Comments

At the U.S. Army Edgewood Chemical Biological Center, experts have been conducting research of “organs” on microchips. Unlike the few other laboratories conducting these types of studies, the Army is specifically looking at potential scenarios that will affect warfighters, especially chemical agent exposure.

Chemists help find binding site of protein that allows plant growth

September 25, 2013 10:22 am | News | Comments

Using a new and super-sensitive instrument, researchers have discovered where a protein binds to plant cell walls, a process that loosens the cell walls and makes it possible for plants to grow. Finding that binding target has been a major challenge for structural biologists because there are only tiny amounts of the protein involved in cell growth and cell walls are very complex.

Microfluidic platform gives a clear look at a crucial step in cancer metastasis

September 20, 2013 1:31 pm | by Jennifer Chu, MIT News Office | News | Comments

Cancer cells metastasize in several stages—first by invading surrounding tissue, then by infiltrating and spreading via the circulatory system. Some circulating cells work their way out of the vascular network, eventually forming a secondary tumor. Now researchers have developed a microfluidic device that mimics the flow of cancer cells through a system of blood vessels. High-resolution time-lapse imaging captures the moment of metastasis.

Microfluidics technique recovers DNA for identification

September 18, 2013 2:13 pm | News | Comments

A team of researchers at NIST and Applied Research Associates, Inc. has demonstrated an improved microfluidic technique for recovering DNA from real-world, complex mixtures such as dirt. According to the researchers their technique delivers DNA from these crude samples with much less effort and in less time than conventional techniques and yields DNA concentrations optimal for human identification procedures.

Droplet digital PCR reproducibly quantifies microRNA biomarkers

September 3, 2013 8:30 am | News | Comments

MicroRNAs are abundant, small regulatory RNA molecules with diverse cellular functions. But their use as reliable blood-based biomarkers has been undermined by factors such as high interday variability. A new study, however, now shows that droplet digital polymerase chain reaction (ddPCR) technology can be used to precisely and reproducibly quantify microRNA in plasma and serum across different days.

Thermo Fisher joins Denmark institute on systems biology effort

September 3, 2013 7:56 am | News | Comments

The Department of Systems Biology at the Technical University of Denmark (DTU) have formed a collaboration with Thermo Fisher Scientific to pursue breakthroughs in the understanding of how cellular protein networks drive important diseases. Under the collaboration, Thermo Fisher will provide early access to new technology and designs, and DTU proteomics scientists will provide feedback and collaborate on new applications.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading