Advertisement
Analytical Instruments
Subscribe to Analytical Instruments
View Sample

FREE Email Newsletter

New light-sensitive protein enables simpler, more powerful optogenetics

June 30, 2014 9:14 am | by Anne Trafton, MIT | News | Comments

Optogenetics relies on light-sensitive proteins that can suppress or stimulate electrical signals within cells. This technique requires a light source to be implanted in the brain, where it can reach the cells to be controlled. Massachusetts Institute of Technology engineers have now developed the first light-sensitive molecule that enables neurons to be silenced noninvasively, using a light source outside the skull.

Fast, portable device for “on-the-go” cocaine testing

June 25, 2014 8:39 am | News | Comments

Testing for cocaine and other drugs usually involves two steps: a quick on-site prescreen, and then a more accurate confirmatory test at a distant laboratory. This process can take days or weeks—but that’s too long in many cases where public safety is at risk. Now, researchers report development of a backpack-sized device that can perform highly accurate and sensitive tests anywhere within 15 min.

Analytic technique offers arson investigators faster, more accurate results

June 18, 2014 9:04 am | by James Burrus, NIST | News | Comments

A research group at NIST has demonstrated a new method for detecting ignitable liquids that could change the way arson fires are investigated. The new process for analyzing debris for traces of fire accelerants is faster and more accurate than conventional methods and produces less waste.

Advertisement

Dynamic spectroscopy duo

June 17, 2014 1:34 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From allowing our eyes to see, to enabling green plants to harvest energy from the sun, photochemical reactions are ubiquitous and critical to nature. Photochemical reactions also play essential roles in high technology. Using photochemical reactions to our best advantage requires a deep understanding of the interplay between the electrons and atomic nuclei within a molecular system after that system has been excited by light.

Pittcon to sponsor International Year of Light

June 16, 2014 10:54 am | News | Comments

The Pittcon Organizing Committee, which holds the Pittcon Conference and Exposition each year, will participate in the International Year of Light initiative at the Associate Sponsor level. The United Nations General Assembly has proclaimed 2015 as the International Year of Light and Light-based Technologies. The sponsorship effort will include a variety of focused workshops and short courses in the coming year.

Music under the microscope

June 11, 2014 9:01 am | News | Comments

Researchers in Germany have converted the frequencies of droplets flowing through thin channels into musical notes. This is more than just a gimmick: The fact that droplets can be controlled so precisely that they become musical instruments means they are also of interest with regard to medical diagnostics applications.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Engineers develop mobile DNA test for HIV

June 6, 2014 7:31 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. bioengineers are developing a simple, highly accurate test to detect signs of HIV and its progress in patients in resource-poor settings. The current gold standard to diagnose HIV in infants and to monitor viral load depends on laboratory equipment and technical expertise generally available only in clinics. The new research features a nucleic acid-based test that can be performed at the site of care.

Advertisement

Mobile Control In the Lab

June 4, 2014 1:56 pm | by Lindsay Hock, Managing Editor | Shimadzu Scientific Instruments | Articles | Comments

The ability to adapt to changing situations is critical for today’s labs. Today, many lab equipment systems are designed with the flexibility to accommodate these needs. Time is also of utmost importance, and the ability for a researcher to walk away from their work, or monitor it on the go, is a new standard.

Miniature gas chromatograph could help farmers detect crop diseases earlier

May 29, 2014 7:55 am | by Angela Colar, Georgia Tech | News | Comments

Researchers at the Georgia Tech Research Institute are developing a micro gas chromatograph for early detection of diseases in crops. About the size of a 9-V battery, the technology’s portability could give farmers just the tool they need to quickly evaluate the health of their crops and address any possible threats immediately, potentially increasing yield by reducing crop losses.

Compact and extremely small-scale incubator microscope to examine cells in time lapse

May 23, 2014 12:38 pm | News | Comments

Biologists and doctors rely heavily on incubators and microscopes. Researchers have invented a new type of microscope that combines the functions of both these tools in a compact system. The incubator microscope is ideally suited for time-lapse examination over a number of weeks and for automatic observation of cell cultures. No bigger than a soda can, it costs 30 times less than buying an incubator and a microscope separately.

Ultra-sensitive nanochip detects cancer early

May 19, 2014 1:02 pm | News | Comments

A new  “lab-on-a-chip” platform developed at the Institute of Photonic Sciences in Spain is capable of detecting detect very low concentrations of protein cancer markers, enabling diagnoses of the disease in its earliest stages. The device, just a few square centimeters in size, uses recent advances in plasmonics, nano-fabrication, microfluids and surface chemistry.

Microchip-like technology allows single-cell analysis

May 14, 2014 1:52 pm | News | Comments

A U.S. and Korean research team has developed a chip-like device that could be scaled up to sort and store hundreds of thousands of individual living cells in a matter of minutes. The system is similar to a random access memory chip, but it moves cells rather than electrons.

Advertisement

Optical traps on chip manipulate many molecules at once

April 30, 2014 2:43 pm | by Anne Ju, Cornell Univ. | News | Comments

A popular technique for studying single molecules is optical trapping. This is a traditionally delicate process, requiring special equipment, a soundproof room and patience as data collected one molecule at a time. Physicists have now shrunk the technology of an optical trap onto a single chip. Instead of just one molecule at a time, the new device can potentially trap hundreds of molecules at once, reducing month-long experiments to days.

Resolving the structure of a single biological molecule

April 28, 2014 12:48 pm | News | Comments

Researchers in the U.K. have applied “soft-touch” atomic force microscopy to large, irregularly arranged and individual DNA molecules. In this form of microscopy, a miniature probe is used to feel the surface of the molecules one by one, rather than seeing them. In this way they have determined the structure of DNA from measurements on a single molecule, and found that the structure is more irregular than previously thought.

April 2014 Issue of R&D Magazine

April 22, 2014 2:16 pm | Digital Editions | Comments

This month's issue of R&D Magazine focuses on laboratory instrumentation, with our cover story on laboratory utilities for R&D facilities. Our editors also take a look at new spectrometer introductions, simulation software, particle analysis in drug delivery, 3-D printing technology, OEM optics for spectrometers and chromatography systems.

Researchers demonstrate first size-based chromatography technique for the study of living cells

April 22, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Using nanodot technology, Lawrence Berkeley National Laboratory researchers have demonstrated the first size-based form of chromatography that can be used to study the membranes of living cells. This unique physical approach to probing cellular membrane structures can reveal information critical to whether a cell lives or dies, remains normal or turns cancerous, that can’t be obtained through conventional microscopy.

Potent, puzzling and (now less) toxic: Team discovers how antifungal drug works

April 15, 2014 5:18 pm | by Diana Yates, Univ. of Illinois | News | Comments

Scientists have solved a decades-old medical mystery, and in the process have found a potentially less toxic way to fight invasive fungal infections, which kill about 1.5 million people a year. The researchers say they now understand the mechanism of action of amphotericin, an antifungal drug that has been in use for more than 50 years even though it is nearly as toxic to human cells as it is to the microbes it attacks.

A Spectral Overview

April 15, 2014 9:56 am | by Lindsay Hock, Managing Editor | Thermo Fisher Scientific, Ocean Optics, Shimadzu Scientific Instruments | Articles | Comments

Spectroscopy is an analytical technique used to identify and determine the physical characteristics of materials through the measurement of emissions and absorption of electromagnetic spectra. A staple in any research laboratory, the technique makes its main home in pharmaceutical, biotechnology and chemical laboratories.

Life Sciences Chrome

April 15, 2014 9:04 am | by Lindsay Hock, Managing Editor | Thermo Fisher Scientific, Agilent Technologies Inc. | Articles | Comments

Driven by rapid growth in forensics, biotechnology, disease diagnostics and environmental regulations, chromatography systems have become a laboratory staple. Used for the separation of complex mixtures, detection of illicit drugs and the production of pharmaceuticals, the biotechnology and pharmaceutical industries are the prime users of chromatography techniques.

The Benefits of Single-particle ICP MS for the Characterization of Engineered Nanomaterials

April 15, 2014 8:41 am | by Rob Thomas and Chady Stephan | Articles | Comments

The unique properties of engineered nanoparticles have created intense interest in their environmental behavior. Due to the increased use of nanotechnology in consumer products, industrial applications and health care technology, nanoparticles are more likely to enter the environment. For this reason, it’s not only important to know the type, size and distribution of nanoparticles, but it’s also crucial to understand their impact.

New finding on the dual role of carbon dioxide in photosynthesis

April 14, 2014 10:03 am | News | Comments

It is well known that inorganic carbon in the form of carbon dioxide, CO2, is reduced in a light driven process known as photosynthesis to organic compounds in the chloroplasts. Less well known is that inorganic carbon also affects the rate of the photosynthetic electron transport. Researchers in Sweden have recently found that its ionic form bicarbonate, has a regulating function in the splitting of water in photosynthesis.

Robotic arm probes chemistry of 3-D objects by mass spectrometry

March 27, 2014 11:49 am | by John Toon, Georgia Institute of Technology | News | Comments

When life on Earth was first getting started, simple molecules bonded together into the precursors of modern genetic material. A catalyst would’ve been needed, but enzymes had not yet evolved. One theory is that the catalytic minerals on a meteorite’s surface could have jump-started life’s first chemical reactions. But scientists need a way to directly analyze these rough, irregularly shaped surfaces.

Real-life CSI: What can investigators really tell from gunshot residue?

March 26, 2014 1:02 pm | News | Comments

The popular TV series “CSI” is fiction, but everyday, real-life investigators and forensic scientists collect and analyze evidence to determine what happened at crime scenes. In a recent study, scientists say they have developed a more rapid and accurate method based on infrared spectroscopy that could allow crime scene investigators to tell what kind of ammunition was shot from a gun based on the residue it left behind.

New method automatically tracks biological particles in live cell microscopy images

March 25, 2014 12:58 pm | News | Comments

In order to track the movements of biological particles in a cell, scientists at Heidelberg Univ. and the German Cancer Research Center have developed a powerful analysis method for live cell microscopy images. This so-called probabilistic particle tracking method is automatic, computer-based and can be used for time-resolved 2-D and 3-D microscopy image data.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading