Advertisement
Simulation Tools
Subscribe to Simulation Tools
View Sample

FREE Email Newsletter

New modeling approach transforms imaging technologies

February 5, 2013 12:09 pm | by Emil Venere, Purdue University | News | Comments

Researchers are improving the performance of technologies ranging from medical computed tomography scanners to digital cameras using a system of models to extract specific information from huge collections of data and then reconstructing images like a jigsaw puzzle. The new approach is called model-based iterative reconstruction, or MBIR, and it is helping to greatly reduce the noise in data, providing great clarity at lower radiation intensities.

Winners of annual NSF visualization competition announced

February 1, 2013 12:03 pm | News | Comments

The National Science Foundation (NSF), along with the journal Science, this week announced the 53 winners and honorable mentions of the International Science & Technology Visualization Challenge, a contest jointly sponsored by NSF and the joournal Science. The winning entries highlight the often stunning capabilities of computer-aided visualization techniques.

Simulating more efficient solar cells

January 28, 2013 1:50 pm | News | Comments

Using an exotic form of silicon could substantially improve the efficiency of solar cells, according to computer simulations by researchers at the University of California, Davis and in Hungary.  Solar cells are based on the photoelectric effect: A photon, or particle of light, hits a silicon crystal and generates a negatively charged electron and a positively charged hole. Collecting those electron-hole pairs generates electric current. Conventional solar cells generate one electron-hole pair per incoming photon, and have a theoretical maximum efficiency of 33%. One exciting new route to improved efficiency is to generate more than one electron-hole pair per photon.

Advertisement

Researchers break million-core supercomputer barrier

January 28, 2013 10:18 am | by Andrew Myers, Stanford University | News | Comments

Stanford Engineering's Center for Turbulence Research has set a new record in computational science by successfully using a supercomputer with more than one million computing cores to solve a complex fluid dynamics problem—the prediction of noise generated by a supersonic jet engine.

“Quadruple helix” DNA structure proven to exist in human cells

January 21, 2013 8:53 am | News | Comments

Marking the culmination of over 10 years of investigation by scientists to show—in vivo—that complex four-stranded structures exist in the human genome alongside Watson and Crick’s famous double helix, researchers in the U.K. have recently published a paper that goes on to show clear links between concentrations of four-stranded quadruplexes and the process of DNA replication, which is pivotal to cell division and production.

Study reveals extraordinary glass properties

January 7, 2013 7:41 am | News | Comments

Armed with a better understanding of how glasses age and evolve, researchers at the University of Chicago and the University of Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process.

How computers push on the molecules they simulate

January 3, 2013 10:15 am | News | Comments

Computer simulations are essential to test theories and explore what's inaccessible to direct experiment. Digital computers can't use exact, continuous equations of motion and have to slice time into chunks, so persistent errors are introduced in the form of "shadow work" that distorts the result. Scientists have learned to separate the physically realistic aspects of the simulation from the artifacts of the computer method.

Physicists take photonic topological insulators to the next level

December 26, 2012 8:13 am | News | Comments

Researchers at The University of Texas at Austin have designed a simulation that, for the first time, emulates key properties of electronic topological insulators. Their simulation is part of a rapidly moving scientific race to understand and exploit the potential of topological insulators, which are a state of matter that was only discovered in the past decade.

Advertisement

Toward a new model of the cell

December 17, 2012 9:58 am | News | Comments

Researchers at the University of California, San Diego School of Medicine and colleagues have proposed a new method that creates an ontology, or a specification of all the major players in the cell and the relationships between them. This computational model of the cell is made from large networks of gene and protein interactions, and is created automatically from large datasets, helping researchers see potentially new biological components.

Study offers insight into converting wood to bio-oil

December 14, 2012 8:15 am | News | Comments

New research from North Carolina State University provides molecular-level insights into how cellulose breaks down in wood to create "bio-oils" which can be refined into any number of useful products. Using a supercomputer, the team calculated what's occurring at the molecular level when wood is rapidly heated to high temperature in the absence of oxygen, a decomposition process known as pyrolysis.

Virtual reality system is key to medical discovery

December 11, 2012 12:31 pm | News | Comments

Because of the limited image spatial-resolution of even today's best-quality laptop and desktop computers, researchers and physicians often can’t see phenomena that are too large, too small, too complex, or too distant. CAVE2, a next-generation, large-scale virtual environment, combines the benefits of scalable-resolution display walls with virtual-reality system to create a revealing and seamless 2D and 3D environment that is becoming increasingly important in scientific discovery.

Do we live in a computer simulation? Idea can be tested

December 11, 2012 8:20 am | by Vince Stricherz, UW | News | Comments

A decade ago, a British philosopher put forth the notion that the universe we live in might in fact be a computer simulation run by our descendants. While that seems far-fetched, perhaps even incomprehensible, a team of physicists at the University of Washington has come up with a potential test to see if the idea holds water.

A human-caused climate change signal emerges from the noise

November 30, 2012 7:40 am | News | Comments

By comparing simulations from 20 different computer models to satellite observations, Lawrence Livermore National Laboratory climate scientists and colleagues from 16 other organizations have found that tropospheric and stratospheric temperature changes are clearly related to human activities.

Advertisement

Deciphering bacterial doomsday decisions

November 26, 2012 11:28 am | News | Comments

Like a homeowner prepping for a hurricane, the bacterium Bacillus subtilis uses a long checklist to prepare for survival in hard times. In a new study, scientists at Rice University and the University of Houston uncovered an elaborate mechanism that allows B. subtilis to begin preparing for survival, even as it delays the ultimate decision of whether to "hunker down" and withdraw into a hardened spore.

Modeling the breaking points of metallic glasses

November 26, 2012 7:44 am | News | Comments

Metallic glass alloys (or liquid metals) are three times stronger than the best industrial steel, but can be molded into complex shapes with the same ease as plastic. These materials are highly resistant to scratching, denting, shattering, and corrosion. Mathematical methods developed by a Lawrence Berkeley National Laboratory scientists will help explain why liquid metals have wildly different breaking points.

Study reveals clues to cause of hydrogen embrittlement

November 19, 2012 1:39 pm | News | Comments

Since the phenomenon was discovered in 1875, hydrogen embrittlement has been a persistent problem for the design of structural materials. Despite decades of research, experts have yet to fully understand the physics underlying the problem and must still resort to a trial-and-error approach. Now, a team of researchers have shown that the answer may be rooted in how hydrogen modifies material behaviors at the nanoscale.

Scientists simulate Earth's creation to solve core problem

November 19, 2012 8:33 am | News | Comments

Using computer simulations, researchers from the University of California, Davis and the Chinese Academy of Sciences in Beijing have helped to solve a mystery that scientists have puzzled over since the early 1950s: What accounts for Earth's core density?

Supercomputer simulations studied to improve helmets

November 14, 2012 1:36 pm | News | Comments

Researchers at Sandia National Laboratories and the University of New Mexico are comparing supercomputer simulations of blast waves on the brain with clinical studies of veterans suffering from mild traumatic brain injuries (TBIs) to help improve helmet designs.

Predicting presidents, storms and life by computer

November 12, 2012 11:09 am | by Seth Borenstein, AP Science Writer | News | Comments

Over the course of two weeks this fall, computer models made a startling sequence of correct and useful predictions. By running thousands of simulations on polling data, Nate Silver correctly forecasted how all 50 states would vote for president. In the case of Hurricane Sandy, meteorologists identified the potential danger to the Northeast nearly a week before the storm arrived. Computer models of many kinds have improved in recent years, and the approach is finding new, unexpected uses.

A new way of making glass

November 9, 2012 10:46 am | News | Comments

A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are arranged around each other. The researchers created the new type of glass in a computer through encouraging atoms in a nickel-phosphorous alloy to form a polyhedron.

New study helps reveal how friction works at the nanoscale

November 8, 2012 12:13 pm | News | Comments

Recent work by scientists in Italy provides a new tool to better understand how sliding friction works in nanotribology, through colloidal crystals. By theoretically studying these systems of charged microparticles, researchers are able to analyze friction forces through molecular dynamics simulations with accuracy never experienced before.

Millimeter-wave oscillation possible in ferromagnetic nanocontact device

November 8, 2012 8:47 am | News | Comments

Conventional giant magnetoresistive devices or ferromagnetic tunnel junction devices provide only low frequency oscillation and have been deemed unsuitable for applications requiring millimeter-wave (30-300 GHz) oscillation, including radar. Researchers in Japan have recently demonstrated, however, that oscillations of 5 to 140 GHz is theoretically possible in these devices by supplying direct current.

New computational method for timing the Tree of Life

November 6, 2012 11:25 am | News | Comments

With its deeply embedded roots, sturdy trunk, and dense profusion of branches, the Tree of Life is a structure of nearly unfathomable complexity and beauty. While major strides have been made to establish the evolutionary hierarchy encompassing every living species, the project is still in its infancy. At Arizona State University's Biodesign Institute, Sudhir Kumar has been filling in the Tree of Life by developing sophisticated methods and bioinformatics tools.

Complex composite study to use MSC Nastran, Marc sim tools

October 30, 2012 4:37 pm | News | Comments

MSC Software Corporation this week announced that Stanford University is using its MSC Nastran and Marc simulation tools to conduct a new study on the testing and analysis of complex composite materials. The goals of the study are to reduce extensive and expensive testing programs, optimize the design of testing configurations and redefine structural deformation and failure processes.

Modeling feat sheds light on protein channel's function

October 19, 2012 7:39 am | News | Comments

Chemists at the California Institute of Technology have managed, for the first time, to simulate the biological function of a channel called the Sec translocon, which allows specific proteins to pass through membranes. The feat required bridging timescales from the realm of nanoseconds all the way up to full minutes, exceeding the scope of earlier simulation efforts by more than six orders of magnitude.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading