Advertisement
Simulation Tools
Subscribe to Simulation Tools

The Lead

Multiphysics Brings Vaccines to the Developing World

October 24, 2014 10:22 am | by Laura Bowen, COMSOL | COMSOL, Inc. | Articles | Comments

In many areas of the developing world, there’s limited access to electricity, and many places have never had any type of power infrastructure. This presents a challenge for aid workers and doctors. In the recent past, vaccines that needed to be stored at cold, relatively constant temperatures couldn’t be taken into the remote areas where they were needed most.

Atomic trigger shatters mystery of how glass deforms

October 20, 2014 11:04 am | News | Comments

Research at Oak Ridge National Laboratory has cracked one mystery of glass to shed light on the...

Can it be real? Augmented reality melds work, play

October 15, 2014 9:12 am | by Salim Essaid, Associated Press Writer | News | Comments

Mark...

Untangling how cables coil

October 6, 2014 7:57 am | by Jennifer Chu, MIT News Office | Videos | Comments

The world’s fiber-optic network spans more than 550,000 miles of undersea cable that transmits...

View Sample

FREE Email Newsletter

Untangling how cables coil

October 3, 2014 10:48 am | by Jennifer Chu, MIT News Office | Videos | Comments

A rip or tangle in any part of world’s 550,000-mile fiber-optic network can significantly slow telecommunications around the world. Now engineers have developed a method that predicts the pattern of coils and tangles that a cable may form when deployed onto a rigid surface. The research combined laboratory experiments with custom-designed cables, computer-graphics technology used to animate hair in movies, and theoretical analyses.

Research confirms controversial Darwin theory of “jump dispersal”

October 2, 2014 8:22 am | News | Comments

More than one hundred and fifty years ago, Charles Darwin hypothesized that species could cross oceans and other vast distances on vegetation rafts, icebergs, or in the case of plant seeds, in the plumage of birds. Though many were skeptical of Darwin's "jump dispersal" idea and instead supported the idea of the use of land bridges, a new computational method now suggests that Darwin might have been correct.

Virtual breast could improve cancer detection

October 1, 2014 9:10 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Only a minority of suspicious mammograms actually leads to a cancer diagnosis, which results in lots of needless worry and spent time for women and their families. Ultrasound elastography could be an excellent screening tool but it requires a lot of skill and interpretation. In an effort to improve results, researchers in Michigan have developed a virtual “breast”, allowing medical professionals to practice in the laboratory.

Advertisement

California drought linked to climate change

September 30, 2014 9:42 am | by Ker Than, Stanford Univ. | Videos | Comments

The atmospheric conditions associated with the unprecedented drought currently afflicting California are "very likely" linked to human-caused climate change, according to Stanford Univ. scientists. The team used a combination of computer simulations and statistical techniques to show that a persistent region of high atmospheric pressure hovering over the Pacific Ocean was likely to form from modern greenhouse gas concentrations.

Simulations reveal an unusual death for ancient stars

September 29, 2014 11:01 am | by Linda Vu, Lawrence Berkeley National Laboratory | News | Comments

Certain primordial stars—those between 55,000 and 56,000 times the mass of our sun, or solar masses—may have died unusually. In death, these objects—among the universe’s first-generation of stars—would have exploded as supernovae and burned completely, leaving no remnant black hole behind.

Researcher works to predict electric power blackouts before they happen

September 26, 2014 8:34 am | by Katie Jones, Oak Ridge National Laboratory | News | Comments

The largest power outage in U.S. history, the 2003 Northeast blackout, began with one power line in Ohio going offline and ended with more than 50 million people without power throughout the Northeast and the Canadian province of Ontario. Despite the apparent failure of the electric grid during such cascading events, blackouts aren’t necessarily grid failures.

Team aims to improve plant-based battery with neutrons, simulation

September 18, 2014 8:02 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

When Orlando Rios first started analyzing samples of carbon fibers made from a woody plant polymer known as lignin, he noticed something unusual. The material’s microstructure—a mixture of perfectly spherical nanoscale crystallites distributed within a fibrous matrix—looked almost too good to be true.

Engineers advance understanding of graphene’s friction properties

September 8, 2014 8:09 am | News | Comments

On the macroscale, adding fluorine atoms to carbon-based materials makes for water-repellant, non-stick surfaces, such as Teflon. However, on the nanoscale, adding fluorine to graphene vastly increased the friction experienced when sliding against the material. Through a combination of physical experiments and atomistic simulations, a Univ. of Pennsylvania research team has discovered the mechanism behind this surprising finding.

Advertisement

Yellowstone super-eruption would send ash across North America

August 27, 2014 12:22 pm | News | Comments

According to a new study, in the unlikely event of a volcanic super-eruption at Yellowstone National Park, the northern Rocky Mountains would be blanketed in meters of ash, and millimeters would be deposited as far away as New York City, Los Angeles and Miami. An improved computer model finds that the hypothetical, large eruption would create a distinctive kind of ash cloud known as an umbrella, which expands evenly in all directions.

Laser pulse turns glass into a metal

August 26, 2014 10:06 am | News | Comments

For tiny fractions of a second, when illuminated by a laser pulse, quartz glass can take on metallic properties. The phenomenon, recently revealed by large-scale computer simulations, frees electrons, allowing quartz to become opaque and conduct electricity. The effect could be used to build logical switches which are much faster than today’s microelectronics.

Numerical Simulation of Multiphysics Processes

August 25, 2014 4:11 pm | Award Winners

Sandia National LaboratoriesGoma 6.0 is software for numerical simulation of multiphysics continuum processes, including moving geometry, phase-change, fluid-structural interactions, complex rheology and chemical reactions. It solves the fundamental equations of mass, momentum, energy and chemical species transport using the finite element method (FEM), which can be described by partial differential equations.

Heightened Multiphysics

August 25, 2014 3:53 pm | Award Winners

Modeling and simulation is standard practice in nearly every scientific field. Idaho National Laboratory’s Multiphysics Object Oriented Simulation Environment (MOOSE) has transformed approaches to predictive simulation, making it quick, adaptable and more accessible. MOOSE is a computer software that can be loaded onto most UNIX-compliant operating systems including, but not limited to, Mac OS X, Ubuntu, OpenSuSE, Fedora, CentOS and Redhat.

Simplifying Electrolyte Selection

August 25, 2014 3:27 pm | Award Winners

Mapping of the human genome has advanced our understanding of life, health and potential cures for diseases. Many technologies could benefit from genome-level investigations. Now, a disruptive virtual scientific simulation tool that delivers a genome-level investigation for electrolytes is available. Idaho National Laboratory’s Kevin Gering has developed the Advanced Electrolyte Model (AEM), a molecular-based, scientifically proven simulation tool.

Advertisement

Unlocking the potential of simulation software

August 21, 2014 7:44 am | by Rob Matheson, MIT News Office | News | Comments

With a method known as finite element analysis (FEA), engineers can generate 3-D digital models of large structures to simulate how they’ll fare under stress, vibrations, heat and other real-world conditions. Used for mapping out large-scale structures, these simulations require intensive computation done by powerful computers over many hours, costing engineering firms much time and money.

Researchers uncover clues to flu’s mechanisms

August 4, 2014 3:13 pm | by Mike Williams, Rice Univ. | News | Comments

A flu virus acts like a Trojan horse as it attacks and infects host cells. Scientists at Rice Univ. and Baylor College of Medicine have acquired a clearer view of the well-hidden mechanism involved. Their computer simulations may lead to new strategies to stop influenza, perhaps even a one-size-fits-all vaccine.

Saving seeds the right way can save the world’s plants

July 30, 2014 11:50 am | News | Comments

For decades, strategic seed collections that help preserve biodiversity have been guided by simple models that offer a one-size-fits-all approach for how many seeds to gather. A new study, however, has found that more careful tailoring of seed collections to specific species and situations is critical to preserving plant diversity. A new approach called simulation-based planning was used to recommend how seeds are saved and reintroduced.

Research shows oceans vital for alien life

July 21, 2014 9:01 am | News | Comments

Until now, computer simulations of habitable climates on Earth-like planets have focused on their atmospheres. Mathematicians and earth sciences experts in the U.K. have recently taken the next step, creating a computer-simulated pattern of ocean circulation on a hypothetical ocean-covered Earth-like planet. They hope to learn how different planetary rotation rates would impact heat transport with the presence of oceans taken into account.

3-D nanostructure could benefit nanoelectronics, gas storage

July 15, 2014 10:57 am | by B.J. Almond, Rice Univ. | News | Comments

A 3-D porous nanostructure would have a balance of strength, toughness and ability to transfer heat that could benefit, nanoelectronics, gas storage and composite materials that perform multiple functions, according to engineers at Rice Univ. The researchers made this prediction by using computer simulations to create a series of 3-D prototypes with boron nitride, a chemical compound made of boron and nitrogen atoms.

Familiar yet strange: Water’s “split personality” revealed by computer model

June 18, 2014 2:01 pm | by Catherine Zandonella, Office of the Dean for Research | News | Comments

Seemingly ordinary, water has quite puzzling behavior. Why, for example, does ice float when most liquids crystallize into dense solids that sink? Using a computer model to explore water as it freezes, a team at Princeton Univ. has found that water's weird behaviors may arise from a sort of split personality: At very cold temperatures and above a certain pressure, water may spontaneously split into two liquid forms.

Researchers find mechanism that forms cell-to-cell catch bonds

June 6, 2014 9:09 am | News | Comments

Certain bonds connecting biological cells get stronger when they’re tugged. Those bonds are known as catch bonds and they’re formed by common adhesion proteins called cadherins. Using computer simulations based on data from previous experiments, researchers in Iowa have answered the question about how these bonds get stronger under force.

Surprisingly strong magnetic fields challenge black holes’ pull

June 5, 2014 8:13 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems’ dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes’ powerful gravitational pull, says a team of scientists.

How to Form an Engineering Simulation Plan

June 4, 2014 1:42 pm | by Nicholas M. Veikos, President, CAE Associates Inc., Middlebury, Conn. | Articles | Comments

Upon introducing engineering simulation into an organization, it’s important to formulate an implementation plan. Simply telling the engineering team to “have at it” doesn’t generally lead to positive results. Every plan will be different, but all can benefit from some basic considerations.

Safety Is Key When Planning for U.S. High-speed Rail Lines

June 4, 2014 11:46 am | by Xavier Fornari, Product Marketing Manager, ANSYS, Elancourt, France | Articles | Comments

High-speed rail is a frequently discussed topic, but one that has yet to become a reality in the U.S. A number of states and regions in the U.S. including Texas, California, the Pacific Northwest and Minnesota, to name a few, have planned projects to bring high-speed rail to fruition.

Retaining Knowledge After an Engineer Leaves

June 4, 2014 11:31 am | by Paul Goossens, VP of Engineering Solutions, Maplesoft | Articles | Comments

If a senior engineer left an organization suddenly, how many hours would it take for the engineering team to take over his projects, confident that they understand not only the designs, but why those designs are the way they are? The typical answer is “far too many”. Widespread use of CAE and data management tools have made this task much easier than before, but these tools do little to record the thinking behind the results.

Discovery sheds light on how to control self-assembly process

June 3, 2014 8:35 am | News | Comments

Imagine a tower that builds itself into the desired structure only by choosing the appropriate bricks. Absurd, but in the nano world self-assembly is now a common practice for forming structures. Researchers in Austria have been investigating how they can control the ordering of self-assembling structures and discovered how to switch the assembly process on and off.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading