Advertisement
Modeling
Subscribe to Modeling
View Sample

FREE Email Newsletter

Study: New gas-phase compounds form organic particle ingredients

February 27, 2014 10:51 am | News | Comments

So-called extremely low-volatility organic compounds, which are produced by plants, have been detected for the first time during field and laboratory experiments in Finland and Germany. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol. This in turn should improve existing climate models.

Researchers “design for failure” with model material

February 24, 2014 11:02 am | News | Comments

When deciding what materials to use in building something, determining how those materials respond to stress and strain is often the first task. A material’s macroscopic, or bulk, properties in this area is generally the product of what is happening on a microscopic scale. When stress causes a material’s constituent molecules to rearrange in a way such that they can't go back to their original positions, it is known as plastic deformation.

Scientists successfully test code that models neutrons in reactor core

February 19, 2014 7:15 am | News | Comments

Technical staff at Westinghouse Electric Company LLC, supported by a light water reactor research team at Oak Ridge National Laboratory, have used a new core simulator to analyze its AP1000 advanced pressurized water reactor. The testing focused on modeling the startup conditions and its “neutronics”: the behavior of neutrons in a reactor core.

Advertisement

Study: Arctic getting darker, making Earth warmer

February 18, 2014 8:39 am | by Seth Borenstein, AP Science Writer | News | Comments

The Arctic isn't nearly as bright and white as it used to be because of more ice melting in the ocean, and that's turning out to be a global problem, a new study says. With more dark, open water in the summer, less of the sun's heat is reflected back into space. So the entire Earth is absorbing much more heat than expected.

The physics of curly hair

February 14, 2014 8:23 am | by Denise Brehm, Civil and Environmental Engineering | News | Comments

The heroes and villains in animated films tend to be on opposite ends of the moral spectrum. But they’re often similar in their hair, which is usually extremely rigid or straight and swings to and fro. It’s rare to see an animated character with bouncy, curly hair, since computer animators don’t have a simple mathematical means for describing it. That is, until now.

Shape-sifting: NIST categorizes bio-scaffold by characteristic cell shapes

February 10, 2014 7:49 am | News | Comments

Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at NIST have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.

Computer models help decode cells that sense light without seeing

February 10, 2014 7:47 am | News | Comments

For more than two years, researchers have been investigating melanopsin, a retina pigment capable of sensing light changes in the environment, informing the nervous system and synchronizing it with the day/night rhythm. They have found that this pigment is potentially more sensitive to light than its more famous counterpart rhodopsin, the pigment that allows night vision.

New application of physics tools used in biology

February 10, 2014 7:43 am | by Anne M. Stark, Livermore Lab | News | Comments

A team of physicists have used statistical mechanics and mathematical modeling to shed light on something known as epigenetic memory, which allows an organism to create a biological memory of some variable condition, such as quality of nutrition or temperature. The model highlights the "engineering" challenge a cell must constantly face during molecular recognition.

Advertisement

Simulating Subsidence from Oil and Gas Extraction

February 6, 2014 10:33 am | by S. Monaco, G. Capasso, S. Mantica, Eni E&P D and Datye, R. Vitali, Dassault Systemes | Articles | Comments

Oil and gas remain primary power sources for both personal and industrial use worldwide. Extraction of these fuel resources from underground reservoirs involves complex geomechanical processes, and can result in subsidence of the ground over a reservoir. Since this occurrence can have an impact on the environment and affect the operability of extraction equipment, it needs to be accurately predicted and kept within safe limits.

Scientists produce first ever atom-by-atom simulation of ALD nanoscale film growth

February 5, 2014 1:18 pm | News | Comments

Researchers at Tyndall National Institute in Ireland have produced the first ever atom-by-atom simulation of nanoscale film growth by atomic layer deposition (ALD), a thin-film technology used in the production of silicon chips. The accomplishment required the acquisition of the complete set of hundreds of ALD reactions at the quantum mechanical level.

Researchers at ground control in launching fastest future plane

February 3, 2014 1:06 pm | by Dawn Fuller, Univ. of Cincinnati | News | Comments

The concept of a hypersonic aircraft that takes off from the runway and doesn’t need a rest, inspection or repair is still a unbuilt dream, but Univ. of Cincinnati researchers are developing the validation metrics that could help predict the success or failure of such a model before it is even built, as test data becomes available from component, to sub-system, to the completely assembled air vehicle.

Integrated computer modeling systems to improve water resource management

February 3, 2014 8:31 am | News | Comments

Water resource management efforts have given rise to several computer models dealing with hydrology, public policy, chemistry and more. Jonathan Goodall, associate professor of civil and environmental engineering at the Univ. of Virginia, is working to design an integrated computer modeling system that will seamlessly connect all the different models, enabling everyone involved in the water resources field to see the big picture.

Modeling buildings by the millions: Building codes in China tested for energy savings

January 31, 2014 8:50 am | News | Comments

According to a study by Pacific Northwest National Laboratory, China can build its way to a more energy efficient future by improving the rules regulating these structures like houses, apartments and retail stores. The scientists created a unique model that projects how much energy can be saved with changes to China's building energy codes, and those savings were significant.

Advertisement

Researchers tune in to protein pairs

January 27, 2014 11:25 am | News | Comments

Rice Univ. scientists have created a way to interpret interactions among pairs of task-oriented proteins that relay signals. The goal is to learn how the proteins avoid crosstalk and whether they can be tuned for better performance. Each cell contains thousands of these two-component signaling proteins, which often act as sensors and trigger the cell to act.

Is there an ocean beneath our feet?

January 27, 2014 9:42 am | News | Comments

Scientists at the Univ. of Liverpool have shown that deep sea fault zones could transport much larger amounts of water from the Earth’s oceans to the upper mantle than previously thought. They have estimated that over the age of the Earth, the Japan subduction zone alone could transport the equivalent of up to three and a half times the water of all the Earth’s oceans to its mantle.

Maximizing solar cells

January 22, 2014 11:34 am | News | Comments

As part of his PhD, postdoctoral research fellow Dr. Daniel Tune in Australia has designed a computer modelling system that shows which combination of carbon nanotubes absorb the most sunlight, therefore providing the most energy. In 2011, researchers in the U.S. successfully fabricated a solar cell using carbon nanotubes, but there are more than 70 different types of carbon nanotube that could be used in such solar cells.

Team models sudden thickening of complex fluids

January 16, 2014 2:55 pm | News | Comments

A new model by a team of researchers may shed new understanding on the phenomenon known as discontinuous shear thickening (DST), in which the resistance to stirring takes a sudden jump. Easily observed in a “kitchen experiment” by mixing together equal amounts of cornstarch and water, DST occurs because concentrated suspensions of hard particles in a liquid respond differently than normal fluids to shear forces.

Breakthrough helps explain plasmonic secondary light emission

January 13, 2014 1:47 pm | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Plasmonic nanostructures are of great current interest as chemical sensors or imaging agents because they can detect the emission of light at a different wavelength than the excitation light. Researchers have struggled with how to interpret this resonant secondary light emission. Recent work that models the emission as Raman scattering from electron-hole pairs, however, has shown a way to predict emission outcome.

Earth's crust was unstable in the Archean eon and dripped down into the mantle

December 30, 2013 10:09 am | News | Comments

New model calculations indicate that the extreme density of the base of the thickened primary crust caused it to subside vertically, or “drip”, into Earth's mantle during the Archean eon, which began about 4 billion years ago. In contrast, the movements of today's tectonic plates involve largely lateral movements with oceanic lithosphere recycled in subduction zones.

Team developing new monitoring tools for hydropower generation

December 19, 2013 8:52 am | News | Comments

A group of researchers at Carnegie Mellon Univ. is banking on the efficiency of an environmentally friendly alternative to large hydroelectric operations. Known as hydrokinetic or run-of-the-river power extraction, the new method harvests a small portion of kinetic energy in the river at multiple locations. They are building multi-scale hierarchical models for analyzing large-scale river networks, hydropower project placement, and control.

New DNA “origami” model arranges nanoparticles in 3-D

December 16, 2013 9:44 am | News | Comments

Physicists in Germany have developed a “planet-satellite model” to precisely connect and arrange nanoparticles in 3-D structures. Inspired by the photosystems of plants and algae, these artificial nanoassemblies of DNA strands might in the future serve to collect and convert energy.

Using air transportation data to predict pandemics

December 13, 2013 8:53 am | News | Comments

Computational work conducted at Northwestern Univ. has led to a new mathematical theory for understanding the global spread of epidemics. The resulting insights could not only help identify an outbreak’s origin but could also significantly improve the ability to forecast the global pathways through which a disease might spread.

The heat pump in Europa's ocean

December 11, 2013 2:00 pm | News | Comments

Jupiter’s moon Europa features an intricate network of cracks in its icy surface. This unusual pattern is particularly pronounced around the equator. Scientists performing modeling studies on the potential marine currents below this ice layer have discovered that, near Europa’s equator, warmer water rises from deep within the moon.

Balancing old and new skills

December 10, 2013 11:14 am | by Anne Trafton, MIT News Office | News | Comments

To learn new motor skills, the brain must be plastic: able to rapidly change the strengths of connections between neurons, forming new patterns that accomplish a particular task. However, if the brain were too plastic, previously learned skills would be lost too easily. A new computational model explains how the brain maintains the balance between plasticity and stability, and how it can learn similar tasks without interference.

Teaching matter waves new tricks: making magnets with ultracold atoms

November 27, 2013 10:19 am | News | Comments

In a new effort to understand magnetism, a group of Hamburg Centre for Ultrafast Imaging researchers created “mimic” magnets by controlling quantum matter waves made of rubidium atoms. Under well-defined conditions made possible with the help of supercomputers, these artificially created magnets can be studied with clarity and then give a fresh perspective on long-standing riddles.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading