Advertisement
Modeling
Subscribe to Modeling

The Lead

Researchers develop models to study polyelectrolytes

August 21, 2014 9:04 am | by Matt Shipman, News Services, North Carolina State Univ. | Videos | Comments

Researchers from North Carolina State Univ. have developed a novel and versatile modeling strategy to simulate polyelectrolyte systems. The model has applications for creating new materials as well as for studying polyelectrolytes, including DNA and RNA. Polyelectrolytes are chains of molecules that are positively or negatively charged when placed in water.

First indirect evidence of so-far undetected strange baryons

August 19, 2014 10:06 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

New supercomputing calculations provide the first evidence that particles predicted by the...

From eons to seconds, proteins exploit the same forces

August 12, 2014 7:58 am | by Mike Williams, Rice Univ. | News | Comments

Nature’s artistic and engineering skills are evident in proteins. Scientists at Rice Univ. have...

Geography matters: Model predicts how local “shocks” influence U.S. economy

August 7, 2014 8:57 am | by B. Rose Huber, Woodrow Wilson School of Public and International Affairs | News | Comments

A team of economists including Esteban Rossi-...

View Sample

FREE Email Newsletter

Climate change research goes to the extremes

July 30, 2014 11:50 am | by Angela Herring, Northeastern Univ. | News | Comments

By now, most sci­en­tists agree that the tem­per­a­ture of the planet is rising and that the increase is due to human activ­i­ties. But the jury still out regarding the vari­ability of that increase. Researchers using “big data” computational tools have recently taken a systematic approach to answering this question and their results point to both higher global temperatures and increasing variability among those temperature extremes.

Research shows oceans vital for alien life

July 21, 2014 9:01 am | News | Comments

Until now, computer simulations of habitable climates on Earth-like planets have focused on their atmospheres. Mathematicians and earth sciences experts in the U.K. have recently taken the next step, creating a computer-simulated pattern of ocean circulation on a hypothetical ocean-covered Earth-like planet. They hope to learn how different planetary rotation rates would impact heat transport with the presence of oceans taken into account.

Cell membrane proteins give up their secrets

July 17, 2014 8:03 am | Videos | Comments

Biological physicists at Rice Univ. have succeeded in analyzing transmembrane protein folding in the same way they study the proteins’ free-floating, globular cousins. They have applied energy landscape theory to proteins that are hard to view because they are inside cell membranes. The method should increase the technique’s value to researchers who study proteins implicated in diseases and possibly in the creation of drugs to treat them.

Advertisement

Gas hydrates by the slice

July 9, 2014 8:00 am | by Mike Williams, Rice Univ. | News | Comments

A decade of research by Rice Univ. scientists has produced a 2-D model to prove how gas hydrate, the “ice that burns,” is formed under the ocean floor. Gas hydrate has potential as a source of abundant energy, if it can be extracted and turned into usable form. It also has potential to do great harm.

Ironing out details of the carbon cycle

July 7, 2014 10:02 am | by Steven Powell, Univ. of South Carolina | News | Comments

Iron is present in tiny concentrations in seawater, on the order of a few billionths of a gram in a liter. However, its availability in seawater can have a profound effect on phytoplankton growth and, consequently, the Earth's carbon cycle. In recent research, an assessment was made of the various sources of dissolved iron in the north Atlantic Ocean and surprising discoveries were made about their origins.

Fine-scale climate model projections predict malaria at local levels

July 7, 2014 9:56 am | by Sara LaJeunesse, Penn State | News | Comments

According to a team of researchers who applied a statistical technique to conventional, coarse-scale climate models, population centers in cool, highland regions of East Africa could be more vulnerable to malaria than previously thought, while population centers in hot, lowland areas could be less vulnerable. The new approach improves the accuracy of earlier efforts that used global climate model simulations results.

“Deep learning” makes search for exotic particles easier

July 2, 2014 3:12 pm | News | Comments

Fully automated "deep learning" by computers greatly improves the odds of discovering particles such as the Higgs boson, according to a recent study. In fact, this approach beats even veteran physicists' abilities, which now consists of developing mathematical formulas by hand to apply to data. New machine learning methods are rendering that approach unnecessary.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Advertisement

Researchers show that bacteria can evolve biological timer to survive antibiotics

June 30, 2014 2:14 pm | News | Comments

Using the quantitative approach of physicists, biologists in Israel have developed experimental tools to measure precisely the bacterial response to antibiotics. Their mathematical model of the process has led them to hypothesize that a daily three-hour dose would enable the bacteria to predict delivery of the drug, and go dormant for that period in order to survive.

The aeroacoustics of jets

June 30, 2014 9:22 am | News | Comments

Aerospace engineers from the Univ. of Illinois, Urbana-Champaign are using the National Science Foundation-supported Stampede supercomputer to explore how jets in general, like those on modern aircraft and inside the human body, generate noise. This is important because no simple explanation of how jets generate noise is currently available, and without this understanding making jets quieter is difficult.

Study shows greater potential for solar power

June 23, 2014 9:43 am | News | Comments

Concentrating solar power (CSP) could supply a large fraction of the power supply in a decarbonized energy system, according to a new study of the technology and its potential practical application. For this research, scientists simulated the construction and operation of CSP systems in four regions around the world, taking into account weather variations, plant locations, electricity demand, and costs.

Energy-level alignment at metal/organic interfaces: Tying up the loose ends

June 19, 2014 8:33 am | News | Comments

Organic semiconductors have tremendous potential for complementing conventional, inorganic semiconductors, but energy losses or barriers at the connection interfaces have blocked development efforts. Physicists have now implemented a detailed electrostatic model which is capable of covering the full phenomenological range of interfacial energy-level alignment regimes within a single, consistent framework.

Familiar yet strange: Water’s “split personality” revealed by computer model

June 18, 2014 2:01 pm | by Catherine Zandonella, Office of the Dean for Research | News | Comments

Seemingly ordinary, water has quite puzzling behavior. Why, for example, does ice float when most liquids crystallize into dense solids that sink? Using a computer model to explore water as it freezes, a team at Princeton Univ. has found that water's weird behaviors may arise from a sort of split personality: At very cold temperatures and above a certain pressure, water may spontaneously split into two liquid forms.

Advertisement

Few, if any, big impact craters remain to be discovered on Earth

June 18, 2014 8:02 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

It’s likely that most of the large impact craters on Earth have already been discovered and that others have been erased, according to a new calculation by a pair of Purdue Univ. graduate students. Although it's known that natural processes erase craters fairly quickly from the Earth's surface, this model was the first to quantify how many craters have likely been erased.

Strange physics turns off laser

June 17, 2014 10:59 am | News | Comments

Inspired by anomalies that arise in certain mathematical equations, researchers have demonstrated a laser system that paradoxically turns off when more power is added rather than becoming continuously brighter. The finding could lead to new ways to manipulate the interaction of electronics and light, an important tool in modern communications networks and high-speed information processing.

Surprisingly strong magnetic fields challenge black holes’ pull

June 5, 2014 8:13 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems’ dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes’ powerful gravitational pull, says a team of scientists.

Discovery sheds light on how to control self-assembly process

June 3, 2014 8:35 am | News | Comments

Imagine a tower that builds itself into the desired structure only by choosing the appropriate bricks. Absurd, but in the nano world self-assembly is now a common practice for forming structures. Researchers in Austria have been investigating how they can control the ordering of self-assembling structures and discovered how to switch the assembly process on and off.

The pirate in the microbe

May 29, 2014 11:25 am | News | Comments

Bacteria use threadlike appendages, called pili, to creep along a surface, and some disease-causing microbes extend pili in all directions to move. But until now researchers have been unable to explain why bacteria like these are able to travel in a straight line consistently. A new model developed to describe this movement shows that bacteria do not act as randomly as they appear to when moving.

New engine design could reduce aircraft fuel consumption by 15%

May 27, 2014 12:20 pm | by Christian Johansson, Chalmers University of Technology | News | Comments

According to new research from Sweden, two aircraft engine concepts, a geared turbofan and an open rotor, can enable a significant reduction to aircraft fuel consumption. With an open rotor, the potential reduction is 15%. An open rotor engine generates most of the thrust from two counter-rotating propellers instead of a ducted fan. This enables a larger engine diameter and a higher propulsive efficiency.

New concept to improve power production of wind turbines

May 23, 2014 12:46 pm | News | Comments

In a typical wind farm, the wind turbine located in the wakes of upstream turbines would experience a much different surface wind compared to the ones located upwind due to wake interferences. Scientists at Iowa State Univ. have completed a study on the effects of these relative rotation directions, using two tandem wind turbines as a model. They found a big difference in performance between co-rotating and counter-rotating turbines.

Scientists study biomechanics behind amazing ant strength

May 20, 2014 2:40 pm | News | Comments

A small group of engineers at Ohio State Univ. combined laboratory testing and computational modeling conducted at the Ohio Supercomputer Center to determine the relationship between the mechanical function, structural design and material properties of the Allegheny mound ant, a creature that can lift objects many times heavier than its own body. The study could solve the mystery of how this structure actually works.

Planting the “SEEDS” of solar technology in the home

May 20, 2014 2:35 pm | News | Comments

In an effort to better understand what persuades people to buy photovoltaic systems for their homes, researchers at Sandia National Laboratories are gathering data on consumer motivations that can feed computer models and thus lead to greater use of solar energy. A primary goal of the project is to help increase the nation’s share of solar energy in the electricity market from its current share of less than .05% to at least 14% by 2030.

Study: Emissions from forests influence first stage of cloud formation

May 16, 2014 8:03 am | News | Comments

Clouds are the largest source of uncertainty in present climate models. Much of the uncertainty surrounding clouds' effect on climate stems from the complexity of cloud formation. New research from scientists at the Cosmics Leaving OUtdoor Droplets (CLOUD) experiment at CERN sheds light on new-particle formation, which is the very first step of cloud formation and a critical component of climate models.

The largest electrical networks are not the best

May 12, 2014 2:55 pm | News | Comments

There is an optimum size for electrical networks if what is being considered is the risk of a blackout. This is the conclusion reached by a scientific study by researchers in Spain and the U.S. The study, which analyzed the dynamics of these complex infrastructures, found that an optimum adequate size exists that helps guarantee correct functioning of an electrical network.

Astronomers create first realistic virtual universe

May 7, 2014 2:43 pm | News | Comments

Move over, Matrix, astronomers at MIT/Harvard-Smithsonian Center for Astrophysics and the Heidelberg Institute for Theoretical Studies in Germany have done you one better. They have created the first realistic virtual universe using a computer simulation called "Illustris." Illustris can recreate 13 billion years of cosmic evolution in a cube 350 million light-years on a side with unprecedented resolution.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading