Advertisement
Fiber Optics
Subscribe to Fiber Optics

The Lead

Physicists stop and store light traveling in an optical fiber

May 11, 2015 7:48 am | by Pierre and Marie Curie Univ. | News | Comments

Researchers at the Kastler Brossel Laboratory in Paris have managed to store light that propagates in an optical fiber and to release it later on demand. By causing interaction between the traveling light and a few thousand atoms in the vicinity, they demonstrated an all-fibered memory.

Optical fibers light the way for brain-like computing

March 12, 2015 11:17 am | by Glenn Harris, Univ. of Southampton | News | Comments

Computers that function like the human brain could soon become a reality thanks to new research...

Fiber-optic monitoring tools could help industry unlock geothermal energy

February 17, 2015 12:43 pm | by Scott Gordon, Univ. of Wisconsin-Madison | News | Comments

Univ. of Wisconsin-Madison geoscientists and engineers are working with industry partners and...

Technique doubles the distance of optical fiber communications

February 3, 2015 8:34 am | by Rebecca Caygill, Univ. College London | News | Comments

A new way to process fiber optic signals has been demonstrated by Univ. College London...

View Sample

FREE Email Newsletter

Nanoscale mirrored cavities amplify, connect quantum memories

January 28, 2015 8:11 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

The idea of computing systems based on controlling atomic spins just got a boost from new research performed at MIT and Brookhaven National Laboratory. By constructing tiny "mirrors" to trap light around impurity atoms in diamond crystals, the team dramatically increased the efficiency with which photons transmit information about those atoms' electronic spin states, which can be used to store quantum information.

Scientists reveal breakthrough in optical fiber communications

December 22, 2014 10:44 am | News | Comments

Researchers from the University of Southampton have revealed a breakthrough in optical fiber communications. Academics have collaborated to develop an approach that enables direct modulation of laser currents to be used to generate highly advanced modulation format signals.

Dazzlingly sharp images on curved screens

October 27, 2014 12:54 pm | News | Comments

Projecting images on curved screens poses a dilemma. The sharper the image, the darker it is, even when using lasers and scanning mirrors. A novel optical approach involving the use of an array of microprojectors now brings brightness and sharpness together for the first time on screens of any curvature. It also allows an increase in projection rates by about 10,000 times.

Advertisement

What a “Star Wars” laser bullet really looks like

October 22, 2014 2:50 pm | News | Comments

Action-packed science-fiction movies often feature colorful laser bolts. But what would a real laser missile look like during flight, if we could only make it out? How would it illuminate its surroundings? The answers lie in a film made by researchers in Poland who have captured the passage of an ultrashort laser pulse through the air.

Physicists build reversible tractor beam

October 21, 2014 9:45 am | News | Comments

Laser physicists in Australia have built a tractor beam that can repel and attract objects, using a hollow laser beam that is bright around the edges and dark in its center. It is the first long-distance optical tractor beam and has moved particles one-fifth of a millimeter in diameter a distance of up to 20 cm, around 100 times further than previous experiments.

Revving up fluorescence for superfast LEDs

October 14, 2014 9:17 am | News | Comments

Duke Univ. researchers have made fluorescent molecules emit photons of light 1,000 times faster than normal, setting a speed record and making an important step toward realizing superfast light emitting diodes (LEDs) and quantum cryptography. This finding could help make LED technology, which earned a Nobel Prize this year, suitable for use as a light source in light-based telecommunications.

Light frequencies sniff out deadly materials from a distance

October 9, 2014 10:56 am | News | Comments

Spectroscopic chemical sensing has great promise, but current technologies lack sensitivity and broad spectral coverage. DARPA’s Spectral Combs from UV to THz (SCOUT) program aims to overcome these limitations. The goal is to develop chip-sized, optical frequency combs that accurately identify even tiny traces of dangerous biological and chemical substances several football fields away, DARPA is now soliciting proposals for a solution.

Quantum entanglement made tangible

October 7, 2014 2:00 pm | by Nik Papageorgiou, EPFL | News | Comments

Scientists at EPFL in Switzerland have designed a first-ever experiment for demonstrating quantum entanglement in the macroscopic realm. Unlike other such proposals, the experiment is relatively easy to set up and run with existing semiconductor devices.

Advertisement

Nanoparticles break the symmetry of light

October 6, 2014 12:59 pm | News | Comments

At the Vienna Univ. of Technology gold nanoparticles have been coupled to a glass fiber. The particles emit light into the fiber in such a way that it does not travel in both directions, as one would expect. Instead, the light can be directed either to the left or to the right. This became possible by employing the spin-orbit coupling of light, creating a new kind of optical switch that has the potential to revolutionize nanophotonics.

Untangling how cables coil

October 6, 2014 7:57 am | by Jennifer Chu, MIT News Office | Videos | Comments

The world’s fiber-optic network spans more than 550,000 miles of undersea cable that transmits Email, Websites and other packets of data between continents, all at the speed of light. A rip or tangle in any part of this network can significantly slow telecommunications around the world. Now, engineers have developed a method that predicts the pattern of coils and tangles that a cable may form when deployed onto a rigid surface.

Untangling how cables coil

October 3, 2014 10:48 am | by Jennifer Chu, MIT News Office | Videos | Comments

A rip or tangle in any part of world’s 550,000-mile fiber-optic network can significantly slow telecommunications around the world. Now engineers have developed a method that predicts the pattern of coils and tangles that a cable may form when deployed onto a rigid surface. The research combined laboratory experiments with custom-designed cables, computer-graphics technology used to animate hair in movies, and theoretical analyses.

A new approach to on-chip quantum computing

October 2, 2014 1:17 pm | News | Comments

Commercial devices capable of encrypting information in unbreakable codes exist today, thanks to recent quantum optics advances, especially the generation of photon pairs. Now, an international team is introducing a new method to achieve a different type of photon pair source that fits into the tiny space of a computer chip. The team’s method generates “mixed up” photon pairs from devices that are less than one square millimeter in area.

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

Advertisement

A molecule in an optical whispering gallery

September 23, 2014 9:19 am | News | Comments

Using an optical microstructure and gold nanoparticles, scientists have amplified the interaction of light with DNA to the extent that they can now track interactions between individual DNA molecule segments. In doing so, they have approached the limits of what is physically possible. This optical biosensor for single unlabelled molecules could also be a breakthrough in the development of biochips:

Optical circuit uses record low energy to operate

September 10, 2014 6:07 pm | by Nik Papageorgiou, EPFL | News | Comments

Optical circuits use light instead of electricity, making them faster and more energy-efficient than electrical systems. Scientists in Switzerland have now developed a silicon-based photonic crystal nanocavity to be used as a first building-block for photonic “transistors”. The new device requires record low energy to operate.

Engineers take step toward photonic circuits

August 20, 2014 8:35 am | by Richard Cairney, Univ. of Alberta | News | Comments

The invention of fiber optics revolutionized the way we share information, allowing us to transmit data at volumes and speeds we’d only previously dreamed of. Now, electrical engineering researchers at the Univ. of Alberta are breaking another barrier, designing nano-optical cables small enough to replace the copper wiring on computer chips.

Therapy for ultraviolet laser beams: Hydrogen-treated fibers

August 12, 2014 8:17 am | by Laura Ost, NIST | News | Comments

To make a better optical fiber for transmitting laser beams, the first idea that comes to mind is probably not a nice long hydrogen bath. And yet, scientists have known for years that hydrogen can alter the performance of optical fibers, which are often used to transmit or even generate laser light in optical devices. Researchers at NIST have put this hydrogen “cure” to practical use.

A transistor-like amplifier for single photons

July 28, 2014 11:19 am | by Olivia Meyer-Streng, Max Planck Institute | News | Comments

With the help of ultracold quantum gas, physicists have achieved a 20-fold amplification of single-photon signals, a step that could aid all-optical data processing efforts. The breakthrough was made with the invention of a new type of optical transistor build from a cloud of rubidium atoms, held just above absolute zero, that is transparent to certain wavelengths of light.

Graphene surfaces on photonic racetracks

July 28, 2014 11:12 am | News | Comments

Scientists in the U.K. recently published work that describes how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.  These waveguide loops, called “racetrack resonators” because of their shape, could help form a device architecture that would make graphene biochemical sensors a reality.

Researchers pioneer a Google street view of galaxies

July 23, 2014 9:55 am | by Verity Leatherdale, Univ. of Sydney | News | Comments

A new home-grown instrument based on bundles of optical fibers is giving Australian astronomers the first “Google street view” of the cosmos—incredibly detailed views of huge numbers of galaxies. Developed by researchers at the Univ. of Sydney and the Australian Astronomical Observatory, the optical-fiber bundles can sample the light from up to 60 parts of a galaxy, for a dozen galaxies at a time.

Breakthrough in the development of stretchable optical waveguides

July 16, 2014 10:33 am | News | Comments

Scientists in Belgium have recently fabricated the world’s first randomly deformable optical waveguide. This innovative optical link remains functional for bending radii down to 7 mm, and can be stretched to more than a third of its length. A link like this can be used to interconnect optical components within a stretchable system, just like stretchable electrical interconnections.

New nonlinear metamaterial is a million times better than traditional options

July 2, 2014 3:48 pm | News | Comments

Nonlinear optical materials are widely used in laser systems, but they require high light intensity and long propagation to be effective. A team in Germany and Texas has designed a new 400-nm thick nonlinear mirror that delivers frequency-doubled output using input light intensity as small as that of a laser pointer. Compared to traditional nonlinear materials, the new option offers a million times increase in nonlinear optical response.

Hundreds of sensors packed into a single optical fiber

June 26, 2014 2:37 pm | News | Comments

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the Univ. of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 C. The new technology should be ideal for use in deep drilling operations, nuclear reactor cores and outer space.

Using femtosecond lasers to administer drugs

June 25, 2014 7:59 am | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

A team of scientists in Japan and New Zealand have combined lasers, nanotechnology, and neuroscience to develop a new, versatile drug delivery system. The precise timing of a femtosecond laser is used to release dopamine, a neurochemical, that is dysfunctional in Parkinson’s Disease in a controlled and repeatable manner that mimics the natural dynamic release mechanism.

Nanofibers for quantum computing

June 17, 2014 4:12 pm | News | Comments

A proposed hybrid quantum processor for a future quantum computer uses trapped atoms as the memory and superconducting qubits as the processor. The concept requires, however, an optical trap that is able to work well with superconductors, which don’t like magnetic fields or high optical power. Joint Quantum Institute scientists believe they’ve developed an effective method for creating these ultra-high transmission optical nanofibers.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading