Advertisement
Fiber Optics
Subscribe to Fiber Optics

The Lead

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

A molecule in an optical whispering gallery

September 23, 2014 9:19 am | News | Comments

Using an...

Optical circuit uses record low energy to operate

September 10, 2014 6:07 pm | by Nik Papageorgiou, EPFL | News | Comments

Optical...

Engineers take step toward photonic circuits

August 20, 2014 8:35 am | by Richard Cairney, Univ. of Alberta | News | Comments

The invention of fiber optics revolutionized the way we share information, allowing us to...

View Sample

FREE Email Newsletter

Therapy for ultraviolet laser beams: Hydrogen-treated fibers

August 12, 2014 8:17 am | by Laura Ost, NIST | News | Comments

To make a better optical fiber for transmitting laser beams, the first idea that comes to mind is probably not a nice long hydrogen bath. And yet, scientists have known for years that hydrogen can alter the performance of optical fibers, which are often used to transmit or even generate laser light in optical devices. Researchers at NIST have put this hydrogen “cure” to practical use.

A transistor-like amplifier for single photons

July 28, 2014 11:19 am | by Olivia Meyer-Streng, Max Planck Institute | News | Comments

With the help of ultracold quantum gas, physicists have achieved a 20-fold amplification of single-photon signals, a step that could aid all-optical data processing efforts. The breakthrough was made with the invention of a new type of optical transistor build from a cloud of rubidium atoms, held just above absolute zero, that is transparent to certain wavelengths of light.

Graphene surfaces on photonic racetracks

July 28, 2014 11:12 am | News | Comments

Scientists in the U.K. recently published work that describes how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.  These waveguide loops, called “racetrack resonators” because of their shape, could help form a device architecture that would make graphene biochemical sensors a reality.

Advertisement

Researchers pioneer a Google street view of galaxies

July 23, 2014 9:55 am | by Verity Leatherdale, Univ. of Sydney | News | Comments

A new home-grown instrument based on bundles of optical fibers is giving Australian astronomers the first “Google street view” of the cosmos—incredibly detailed views of huge numbers of galaxies. Developed by researchers at the Univ. of Sydney and the Australian Astronomical Observatory, the optical-fiber bundles can sample the light from up to 60 parts of a galaxy, for a dozen galaxies at a time.

Breakthrough in the development of stretchable optical waveguides

July 16, 2014 10:33 am | News | Comments

Scientists in Belgium have recently fabricated the world’s first randomly deformable optical waveguide. This innovative optical link remains functional for bending radii down to 7 mm, and can be stretched to more than a third of its length. A link like this can be used to interconnect optical components within a stretchable system, just like stretchable electrical interconnections.

New nonlinear metamaterial is a million times better than traditional options

July 2, 2014 3:48 pm | News | Comments

Nonlinear optical materials are widely used in laser systems, but they require high light intensity and long propagation to be effective. A team in Germany and Texas has designed a new 400-nm thick nonlinear mirror that delivers frequency-doubled output using input light intensity as small as that of a laser pointer. Compared to traditional nonlinear materials, the new option offers a million times increase in nonlinear optical response.

Hundreds of sensors packed into a single optical fiber

June 26, 2014 2:37 pm | News | Comments

By fusing together the concepts of active fiber sensors and high-temperature fiber sensors, a team of researchers at the Univ. of Pittsburgh has created an all-optical high-temperature sensor for gas flow measurements that operates at record-setting temperatures above 800 C. The new technology should be ideal for use in deep drilling operations, nuclear reactor cores and outer space.

Using femtosecond lasers to administer drugs

June 25, 2014 7:59 am | by Kathleen Estes, Okinawa Institute of Science and Technology | News | Comments

A team of scientists in Japan and New Zealand have combined lasers, nanotechnology, and neuroscience to develop a new, versatile drug delivery system. The precise timing of a femtosecond laser is used to release dopamine, a neurochemical, that is dysfunctional in Parkinson’s Disease in a controlled and repeatable manner that mimics the natural dynamic release mechanism.

Advertisement

Nanofibers for quantum computing

June 17, 2014 4:12 pm | News | Comments

A proposed hybrid quantum processor for a future quantum computer uses trapped atoms as the memory and superconducting qubits as the processor. The concept requires, however, an optical trap that is able to work well with superconductors, which don’t like magnetic fields or high optical power. Joint Quantum Institute scientists believe they’ve developed an effective method for creating these ultra-high transmission optical nanofibers.

Crystal IS introduces Optan LED technology

June 11, 2014 3:15 pm | Product Releases | Comments

Crystal IS has introduced Optan, the first commercial semiconductor based on native aluminum nitride (AIN) substrates. Optan increases detection sensitivity from monitoring of chemicals in pharma manufacturing to drinking water analysis.

A new way to make laser-like beams using 250x less power

June 6, 2014 9:03 am | News | Comments

With precarious particles called polaritons that straddle the worlds of light and matter, Univ. of Michigan researchers have demonstrated a new, practical and potentially more efficient way to make a coherent laser-like beam. They have made what's believed to be the first polariton laser that is fueled by electrical current as opposed to light, and also works at room temperature, rather than way below zero.

Photonics experts build world's most sensitive thermometer

June 5, 2014 7:51 am | by Jack Baldwin, The Lead | News | Comments

Researchers at the Univ. of Adelaide in South Australia have created a thermometer three times more precise than any existing device, able to measure temperature to 30 billionths of a degree. Using the phenomenon called a “whispering gallery”, which projects sounds, the scientists have designed a crystalline disk that concentrates and reinforces light, allowing them to track a minute difference in speed between red light and green light.

Optical antennas trap and control light with the help of graphene

May 23, 2014 12:35 pm | News | Comments

Researchers in Spain have introduced a platform technology based on optical antennas for trapping and controlling light with graphene. Their experiments show that the dramatically squeezed graphene-guided light can be focused and bent, following the fundamental principles of conventional optics. The work opens new opportunities for smaller and faster photonic devices and circuits.

Advertisement

R&D 100 featured winner: RTI’s NLite nanofiber lighting technology

May 1, 2014 8:56 am | Videos | Comments

Of all the electricity generated in the U.S., more than quarter is consumed by lighting. In 2010, North Carolina’s RTI International launched a new product, NLite, intended to help alleviate this burden by improving the reflectance performance of power-intensive lighting devices such as luminaires and liquid crystal displays. The technology, based on nanofiber reflectance polymers, won a 2011 R&D 100 Award.

Optical traps on chip manipulate many molecules at once

April 30, 2014 2:43 pm | by Anne Ju, Cornell Univ. | News | Comments

A popular technique for studying single molecules is optical trapping. This is a traditionally delicate process, requiring special equipment, a soundproof room and patience as data collected one molecule at a time. Physicists have now shrunk the technology of an optical trap onto a single chip. Instead of just one molecule at a time, the new device can potentially trap hundreds of molecules at once, reducing month-long experiments to days.

New fluorescent hybrid material changes color according to light direction

April 30, 2014 2:39 pm | News | Comments

Researchers in Spain have developed a highly fluorescent hybrid material that changes color depending on the polarization of the light that it is illuminated by. They achieved this with a perfect fit between an inorganic nanostructure and dye molecules.

Information storage for the next generation of plastic computers

April 17, 2014 9:41 am | by Gary Galluzzo, Univ. of Iowa | News | Comments

Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power. But a new proposal by researchers would replace silicon used in these devices with plastic. Their solution converts magnetic information to light in a flexible plastic device.

Combs of light accelerate communication

April 14, 2014 11:39 am | News | Comments

In a recent demonstration by researchers in Europe, miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers. The results, which showed a data rate of 1.44 TB/sec over 300 km, may contribute to accelerating data transmission in large computing centers and worldwide communication networks.

New physical phenomenon on nanowires seen for the first time

April 11, 2014 1:06 pm | News | Comments

For optical communication to happen, it is essential to convert electrical information into light, using emitters. On the other end of the optical link, one needs to translate the light stream into electrical signals using detectors. Current technologies use different materials to realize these two distinct functions, but this might soon change thanks to a new discovery by researchers at IBM.

Tetris in the sky: Gamers play on Philly building

April 7, 2014 9:21 am | by Kathy Matheson, Associated Press | News | Comments

Hundreds of Tetris fans who had a little fun Saturday with a big version of the classic video game on the side of the 29-story Cira Centre in Philadelphia. LED lights embedded in the building's glass facade normally display colorful patterns. On Saturday night, images of super-sized shapes "fell" on two sides of the mirrored tower as competitors used joysticks to maneuver them, creating a spectacle against the night sky.

Researchers develop first phononic crystal that can be altered in real time

April 1, 2014 8:56 am | News | Comments

Using an acoustic metadevice that can influence the acoustic space and can control any of the ways in which waves travel, engineers have demonstrated, for the first time, that it is possible to dynamically alter the geometry of a 3-D colloidal crystal in real time. The crystals designed in the study, called metamaterials, are artificially structured materials that extend the properties of naturally occurring materials and compounds.  

Micro systems with big commercial potential featured in SPIE journal

March 26, 2014 9:28 am | News | Comments

Commercial demand is driving high-tech research and development in micro-optoelectromechanical systems (MOEMS) for diverse applications such as space exploration, wireless systems, and healthcare. A new special section on Emerging MOEMS Technology and Applications in the current issue of the Journal of Micro/Nanolithography, MEMS, and MOEMS discusses these recent breakthrough achievements.

Nanoscale optical switch breaks miniaturization barrier

March 14, 2014 10:15 am | by David Salisbury, Vanderbilt Univ. | News | Comments

An ultra-fast and ultra-small optical switch has been invented that could advance the day when photons replace electrons in the innards of consumer products ranging from cell phones to automobiles. The new optical device can turn on and off trillions of times per second and consists of tiny individual switches made of a metamaterial that uses vanadium dioxide.

Bending the light with a tiny chip

March 11, 2014 7:56 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Imagine that you are in a meeting with coworkers or at a gathering of friends. You pull out your cell phone to show a presentation or a video on YouTube. But you don't use the tiny screen; your phone projects a bright, clear image onto a wall or a big screen. Such a technology may be on its way, thanks to a new light-bending silicon chip developed by researchers at the California Institute of Technology.

Squeezing light into metals

March 7, 2014 7:50 am | News | Comments

Using an inexpensive inkjet printer, Univ. of Utah electrical engineers produced microscopic structures that use light in metals to carry information. This new technique, which controls electrical conductivity within such microstructures, could be used to rapidly fabricate superfast components in electronic devices, make wireless technology faster or print magnetic materials.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading