Advertisement
Electronics
Subscribe to Electronics
View Sample

FREE Email Newsletter

Waves generated by Russian meteor recorded in U.S.

March 7, 2013 10:44 am | News | Comments

While thousands of earthquakes around the globe are recorded by seismometers in these stations—part of the permanent Global Seismographic Network (GSN) and EarthScope's temporary Transportable Array (TA)—signals from large meteor impacts are far less common. The meteor explosion near Chelyabinsk on Feb. 15, 2013, generated ground motions and air pressure waves in the atmosphere. The stations picked up the signals with seismometers and air pressure sensors, and recorded the pressures waves as they cross the United States.

Electron field emitter technology to improve imaging, communications

March 7, 2013 10:24 am | News | Comments

Scientists in Maryland have built a new practical, high-efficiency nanostructured electron source. Unlike thermionic electron sources, which use an electric current to boil electrons off the surface of a wire, the new emitter uses highly porous silicon carbide to avoid the energy efficiency problems of traditional emitters. This type of field emitter has a fast response and could lead to improved X-ray imaging systems.

Light control on superconducting chip brings quantum devices closer

March 4, 2013 3:05 pm | News | Comments

As one crucial step of achieving controllable quantum devices, physicists at the University of California Santa Barbara have developed an unprecedented level of manipulating light on a superconducting chip. In their experiment, they caught and released photons in and from a superconducting cavity by incorporating a superconducting switch.

Advertisement

Smart “stickers” let you find things by phone

March 1, 2013 10:43 am | by Peter Svensson, AP Technology Writer | News | Comments

Jimmy Buchheim's Davie, Fla.-based company, Stick-N-Find Technologies, wants to give people a way to find things, whether it's keys, wallets, TV remotes, or cat collars. There's no real trick to sending out a radio signal and having a phone pick it up. That's been done before. What makes Buchheim’s Stick-N-Find practical is a new radio technology known as Bluetooth Low Energy, which drastically reduces the battery power needed to send out a signal.

Memristor that “learns” provides blueprint for artificial brain

February 27, 2013 11:41 am | News | Comments

Memristors are made of fine nanolayers and can be used to connect electric circuits and for several years have been considered to be the electronic equivalent of the synapse. A researcher in Germany, physicist Andy Thomas, is now using his memristors as key components for his blueprint for an artificial brain.

Clever battery completes stretchable electronics package

February 27, 2013 8:05 am | News | Comments

Northwestern University’s Yonggang Huang and the University of Illinois’ John A. Rogers are the first to demonstrate a stretchable lithium-ion battery—a flexible device capable of powering their innovative stretchable electronics. Their battery continues to work—powering a commercial light-emitting diode (LED)—even when stretched, folded, twisted and mounted on a human elbow. The battery can work for eight to nine hours before it needs recharging, which can be done wirelessly.

Researchers develop new method of controlling nanodevices

February 25, 2013 9:46 am | by Bill Kisliuk, UCLA | News | Comments

Electromagnetic devices, from power drills to smart-phones, require an electric current to create the magnetic fields that allow them to function. But researchers at the University of California, Los Angeles have developed a method for switching tiny magnetic fields on and off with an electric field—a sharp departure from the traditional approach of running a current through a wire. The new composite can control magneto-electric activity at a scale of just 10 nm.

College tests fingerprint purchasing technology

February 22, 2013 10:28 am | by Amber Hunt, Associated Press | News | Comments

Futurists have long proclaimed the coming of a cashless society, where dollar bills and plastic cards are replaced by fingerprint and retina scanners. What they probably didn't see coming was its debut not in Silicon Valley but at a small state college in remote western South Dakota. Two shops on the campus are performing one of the world's first experiments in “biocryptology”, a mix of biometrics—using physical traits for identification—and cryptology—the study of encoding private information.

Advertisement

Technique developed to scale up production of graphene microsupercapacitors

February 20, 2013 8:34 am | News | Comments

While the demand for ever-smaller electronic devices has spurred the miniaturization of a variety of technologies, one area has lagged behind in this downsizing revolution: energy storage units, such as batteries and capacitors. Now, a team from University of California, Los Angeles may have changed the game by developing a groundbreaking technique that uses a DVD burner to fabricate microscale graphene-based supercapacitors.

Production process doubles speed, efficiency of flexible electronics

February 19, 2013 10:44 am | News | Comments

Stretched-out clothing might not be a great practice for laundry day, but in the case of microprocessor manufacture, stretching out the atomic structure of the silicon in the critical components of a device can be a good way to increase a processor's performance.

Chip cleans up common flaws in amateur photographs

February 19, 2013 8:28 am | by Helen Knight, MIT News correspondent | News | Comments

Your smartphone snapshots could be instantly converted into professional-looking photographs with just the touch of a button, thanks to a processor chip developed at Massachusetts Institute of Technology. The chip can perform tasks such as creating more realistic or enhanced lighting in a shot without destroying the scene's ambience, in just a fraction of a second. The technology could be integrated with any smartphone, tablet computer, or digital camera.

Organic electronics: Better contact between carbon compounds and metals

February 18, 2013 9:00 am | News | Comments

A recurring problem in organic electronics technology has been the difficulty in establishing good electrical contact between the active organic layer and metal electrodes. Organic molecules are frequently used for this purpose, but, until recent research at the Helmholtz Center in Germany unraveled this mystery, it was practically impossible to accurately predict which molecules performed well on the job.

Researchers invent “acoustic-assisted” magnetic information storage

February 14, 2013 2:29 pm | News | Comments

Electrical engineers at Oregon State University have discovered a way to use high-frequency sound waves to enhance the magnetic storage of data, offering a new approach to improve the data storage capabilities of a multitude of electronic devices around the world.

Advertisement

Quantum information joined to quantum storage

February 14, 2013 10:38 am | News | Comments

Physicists in Finland have successfully connected a superconducting quantum bit, or qubit, with a micrometer-sized drum head. With this invention they have transferred information from the qubit to the resonator and back again. This work represents the first step towards creating exotic mechanical quantum states which can preserve the qubit’s information (as a vibration) for a longer period of time.

Self-assembled biological filaments form 3D microelectronics

February 12, 2013 1:24 pm | News | Comments

The size of electronic components is reaching a physical limit. While 3D assembly can reduce bulk, the challenge is in manufacturing these complex electrical connections. Biologists and physicists in France have recently developed a system of self-assembled connections using actin filaments for 3D microelectronic structures. Once the actin filaments become conductors, they join the various components of a system together.

3D micrometer-scale printer is world’s fastest

February 8, 2013 11:09 am | News | Comments

At the Photonics West conference in San Francisco this week, the Germany-based company Nanoscribe showcased the world’s fastest 3D printer of micro- and nanostructures. With this printer, small 3D objects, often smaller than the diameter of a human hair, can be manufactured with minimum time consumption and maximum resolution. The printer is based on a new laser lithography method.

MEMS project pushes for technological revolution

February 7, 2013 6:26 pm | News | Comments

In Germany, a project called MEMS2015 is underway which has the ultimate goal of developing the first-ever universal design methodology for microelectromechanical systems, or MEMS. The effort, a joint government and industry project coordinated by the Robert Bosch corporation, will improve sensors and actuators, and plug the gaps between electronics and mechanics design, manufacturing, and subsequent integration into products.

Improved “peacock" technology could lock in color for high-res displays

February 5, 2013 12:17 pm | News | Comments

Iridescence, or sheen that shifts color depending on your viewing angle, is pretty in peacock feathers. But it's been a nuisance for engineers trying to mimic the birds' unique color mechanism to make high-resolution, reflective, color display screens. Researchers at the University of Michigan have found a way to lock in so-called structural color, which is made with texture rather than chemicals. The finding could lead to advanced color e-books, electronic paper, and screens that don't need their own light to be readable.

Physicists show that organic semiconductors withstand sharp bends

February 5, 2013 11:41 am | News | Comments

Organic semiconductors hold promise for making low-cost flexible electronics—if they can perform in spite of frequent flexing and sharp bending. Scientists have recently demonstrated extremely flexible organic semiconductors that withstood multiple bending cycles in which the devices were rolled to a radius as small as 200 μm. The scientists worked with numerous crystalline devices they made and found no degradation in their performance.

Self-powered nanoscale devices never need new batteries

February 4, 2013 8:59 am | by Adam Piore, Columbia University | News | Comments

Researchers at Columbia University are attempting to build self-powered systems using nanoscale devices that can transmit and receive wireless signals using so little power that their batteries never need replacing. Some of the chips built so far are 100 times more energy efficient than most standard technologies, and they rely on tiny bits of ambient solar energy to recharge themselves.

Microchip moves information around in 3D

January 30, 2013 5:11 pm | News | Comments

Scientists from the University of Cambridge, U.K., have created, for the first time, a new type of microchip which allows information to travel in three dimensions. The chip’s design relies on spintronics, a technology that makes use of an electron's tiny magnetic moment, or “spin”, to store information. Currently, microchips can only pass digital information in a very limited way—from either left to right or front to back.

New device electrically steers and focuses terahertz waves

January 29, 2013 7:53 am | News | Comments

Researchers in Japan and Germany have recently demonstrated a device that can focus and steer terahertz beams electrically. Based on an array of metal cantilevers which can be micromechanically actuated by electrostatic forces, the device can create tunable gratings that may be crucial in future terahertz wavelength communication systems.

DARPA funds research for electronics that disappear

January 28, 2013 5:23 pm | News | Comments

Advanced electronics are indispensable in modern warfare, but locating and tracking them all on the field of battle is almost impossible. To prevent valuable and strategic technology from falling into enemy hands, DARPA has announced the Vanishing Programmable Resources program, which has the aim of improving “transient” electronics, or electronics capable of dissolving into the environment around them.        

Technique points toward 2D devices

January 28, 2013 7:59 am | News | Comments

Rice University scientists have taken an important step toward the creation of 2D electronics with a process to make patterns in atom-thick layers that combine a conductor and an insulator. The materials at play—graphene and hexagonal boron nitride—have been merged into sheets and built into a variety of patterns at nanoscale dimensions.

Researchers keep electronic devices cool with nanotechnology

January 21, 2013 10:57 am | News | Comments

A team of scientists have designed and fabricated ultrasmall devices for energy-efficient electronics. By finding out how molecules behave in these devices, a ten-fold increase in switching efficiency was obtained by changing just one carbon atom. These devices could provide new ways to combat overheating in mobile phones and laptops, and could also aid in electrical stimulation of tissue repair for wound healing.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading