Advertisement
Electrical Engineering
Subscribe to Electrical Engineering

The Lead

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

Charging electric cars efficiently…and inductively

July 31, 2014 10:25 am | News | Comments

We already charge our toothbrushes and cellphones...

Scientists develop new way to separate birdsong sources

July 31, 2014 10:08 am | News | Comments

A team of U.S. and Chinese scientists have...

A smart wristband for nocturnal cyclists

July 30, 2014 12:08 pm | News | Comments

A team of engineers in Switzerland have invented a...

View Sample

FREE Email Newsletter

Vision-correcting display makes reading glasses so yesterday

July 30, 2014 9:00 am | by Sarah Yang, UC Berkeley | Videos | Comments

What if computer screens had glasses instead of the people staring at the monitors? That concept is not too far afield from technology being developed by UC Berkeley computer and vision scientists. They are developing computer algorithms to compensate for an individual’s visual impairment, and creating vision-correcting displays that enable users to see text and images clearly without wearing eyeglasses or contact lenses.

New gadget helps the vision impaired to read graphs

July 29, 2014 10:47 am | News | Comments

An affordable digital reading system invented by researchers in Australia now allows people who are blind to read more than just words. The device works by using pattern recognition technology and other methods on any document to identify images, graphs, maths or text. From here it is then converted to audio format with navigation markup.

DARPA collaboration launches breakthrough elastic cloud-to-cloud networking

July 29, 2014 9:06 am | News | Comments

In 2006, DARPA launched a long-term project called CORONET, which sought to develop a cloud-based technology that could enable affordable, fast bandwidth and ensure the survival of cloud networks in the event of system-wide failures. After years of work, scientists from AT&T, IBM and Applied Communication Sciences have announced a proof-of-concept technology that reduces setup times for cloud-to-cloud connectivity from days to seconds.

Advertisement

A transistor-like amplifier for single photons

July 28, 2014 11:19 am | by Olivia Meyer-Streng, Max Planck Institute | News | Comments

With the help of ultracold quantum gas, physicists have achieved a 20-fold amplification of single-photon signals, a step that could aid all-optical data processing efforts. The breakthrough was made with the invention of a new type of optical transistor build from a cloud of rubidium atoms, held just above absolute zero, that is transparent to certain wavelengths of light.

Graphene surfaces on photonic racetracks

July 28, 2014 11:12 am | News | Comments

Scientists in the U.K. recently published work that describes how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.  These waveguide loops, called “racetrack resonators” because of their shape, could help form a device architecture that would make graphene biochemical sensors a reality.

The birth of topological spintronics

July 24, 2014 10:31 am | News | Comments

Research led by Penn State Univ. and Cornell Univ. physicists is studying "spintorque" in devices that combine a standard magnetic material with a new material known as a topological insulator. The new insulator, which is made of bismuth selenide and operates at room temperature, overcomes one of the key challenges to developing a spintronics technology based on spin-orbit coupling.

First direct-diode laser bright enough to cut, weld metal

July 23, 2014 9:43 am | by Rob Matheson, MIT News Office | News | Comments

MIT Lincoln Laboratory spinout TeraDiode is commercializing a multi-kilowatt diode laser system that’s bright enough to cut and weld through a half-inch of steel, and at greater efficiencies than today’s industrial lasers. The new system is based on a wavelength beam-combining laser diode design that won an R&D 100 Award in 2012. It combines multiple beams into a single output ray, allowing for a power boost without efficiency loss.

Joint Singapore-U.S. program to increase IC circuit designers globally

July 22, 2014 1:37 pm | News | Comments

North Carolina-based Semiconductor Research Corporation (SRC) and Singapore’s Silicon Cloud International (SCI) are launching a new program aimed at globally advancing integrated circuit (IC) design education and research. The program will focus on increasing the quantity of IC designers in university systems worldwide, and enhancing expertise in secure cloud computing architecture.

Advertisement

DNA used as a lightswitch

July 21, 2014 9:12 am | News | Comments

Using two thin, tiny gold nanorods 10,000 times thinner than a human hair, researchers from the U.S. and Germany have succeeded in creating an adjustable filter for so-called circularly polarized light. This switch for nano-optics is made from two tiny gold rods that reversibly change their optical properties when specific DNA molecules are added.

Study: Squid skin protein could improve biomedical technologies

July 16, 2014 2:24 pm | News | Comments

The common pencil squid may hold the key to a new generation of medical technologies that could communicate more directly with the human body. Materials science researchers in California have discovered that reflectin, a protein in the tentacled creature’s skin, can conduct positive electrical charges, or protons, making it a promising material for building biologically inspired devices.  

Breakthrough in the development of stretchable optical waveguides

July 16, 2014 10:33 am | News | Comments

Scientists in Belgium have recently fabricated the world’s first randomly deformable optical waveguide. This innovative optical link remains functional for bending radii down to 7 mm, and can be stretched to more than a third of its length. A link like this can be used to interconnect optical components within a stretchable system, just like stretchable electrical interconnections.

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Researchers demonstrate novel, tunable nanoantennas

July 14, 2014 1:39 pm | News | Comments

A research team in Illinois has built a new type of tunable nanoscale antenna that could facilitate optomechanical systems that actuate mechanical motion through plasmonic field enhancements. The team’s fabrication process shows for the first time an innovative way of fabricating plasmonic nanoantenna structures under a scanning electron microscope, which avoids complications from conventional lithography techniques.

Advertisement

Researchers invent nanotech microchip to diagnose type-1 diabetes

July 14, 2014 9:22 am | News | Comments

A cheap, portable, microchip-based test for diagnosing type-1 diabetes could speed up diagnosis and enable studies of how the disease develops. Handheld microchips distinguish between the two main forms of diabetes mellitus, which are both characterized by high blood-sugar levels but have different causes. Until now, making the distinction has required a slow, expensive test available only in sophisticated healthcare settings.

Drones could provide perfect lighting for photography

July 11, 2014 11:48 am | by Larry Hardesty, MIT | News | Comments

Lighting is crucial to the art of photography, but they are cumbersome and difficult to use properly. Researchers at Massachusetts Institute of Technology and Cornell Univ. aim to change that by providing photographers with squadrons of small, light-equipped autonomous robots that automatically assume the positions necessary to produce lighting effects specified through a simple, intuitive, camera-mounted interface.

LG Display unveils 18-inch flexible display

July 11, 2014 11:38 am | by Youkyung Lee, AP Technology Writer | News | Comments

The South Korean display panel maker LG has developed an 18-inch flexible display that can be rolled into the shape of a thin cylinder, a step toward making a large display for flexible TVs. Although not as sharp as the latest ultra-high definition flat screens, the new display has a resolution of 1200 pixels by 810 pixels and maintains its function when it is rolled up.

Inventor pushes solar panels for roads, highways

July 11, 2014 11:33 am | by Nicholas K. Geranios, Associated Press | News | Comments

The solar panels that Idaho inventor Scott Brusaw has built aren't meant for rooftops. They are meant for roads, driveways, parking lots, bike trails and, eventually, highways. Brusaw, an electrical engineer, says the hexagon-shaped panels can withstand the wear and tear that comes from inclement weather and vehicles, big and small, to generate electricity.

Silicon oxide memories catch manufacturers’ eye

July 10, 2014 5:06 pm | by Jade Boyd, Rice Univ. | News | Comments

First developed five years ago at Rice Univ., silicon oxide memories are a type of two-terminal, “resistive random-access memory” (RRAM) technology that beats flash memory’s data density by a factor of 50. At Rice, the laboratory of chemist and 2013 R&D Magazine Scientist of the Year James Tour has recently developed a new version of RRAM that Tour believes outperforms more than a dozen competing versions.

“Nanopixels” promise thin, flexible high-res displays

July 10, 2014 9:35 am | News | Comments

A team in the U.K. has found that by sandwiching a 7-nm thick layer of a phase change material between two layers of a transparent electrode they could use a tiny current to “draw” images within the sandwich “stack”. The discovery could make it possible to create pixels just a few hundred nanometers across and pave the way for extremely high-resolution and low-energy thin, flexible displays.

Speeding up data storage by a thousand times with “spin current”

July 10, 2014 9:31 am | News | Comments

Spin current, in which an ultra-short laser pulse generates electrons all with the same spin, is a promising new technology which potentially allows data to be stored 1,000 times as fast as traditional hard drive. Researchers in The Netherlands have recently shown that generated spin current is actually able to cause a change in magnetization, hinting at practical application in the future.

TransWall: KAIST’s two-sided, transparent touchscreen

July 8, 2014 1:01 pm | Videos | Comments

Researchers in Korea have been working to perfect their two-sided, touchable, transparent display technology called TransWall. Featuring an incorporated surface transducer, TransWall provides audio and vibrotactile feedback to users, enabling people to see, hear, or even touch other people through the wall while enjoying gaming and interpersonal communication.

Silicon sponge improves lithium-ion battery performance

July 8, 2014 10:20 am | News | Comments

Researchers at Pacific Northwest National Laboratory have developed a porous material to replace the graphite traditionally used in a battery's electrodes. Made from silicon, which has more than 10 times the energy storage capacity of graphite, the sponge-like material can help lithium-ion batteries store more energy and run longer on a single charge.

Nanoscale cooling element works in electrical insulators as well

July 8, 2014 8:45 am | News | Comments

An international research collaboration has designed a miniscule cooling element that uses spin waves to transport heat in electrical insulators. Although physicists have used spin for cooling purposes before, this is the first time that they have successfully done this in insulating materials. The cooling element could be used to dissipate heat in the increasingly smaller electrical components of computer chips.

The new atomic age: Building smaller, greener electronics

July 7, 2014 3:06 pm | by Bryan Alary, Univ. of Alberta | News | Comments

Robert Wolkow and his team at the Univ. of Alberta are working to engineer atomically precise computing technologies that have practical, real-world applications. In recent research, he and his team observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step.

Toward a new way to keep electronics from overheating

July 2, 2014 1:05 pm | News | Comments

Using something called a microchannel heat sink to simulate the warm environment of a working computer, researchers in Malaysia have analyzed three nanofluids for the traits that are important in an effective coolant. The results of their study show that the nanofluids, which are made of metallic nanoparticles that have been added to a liquid, such as water, all performed better than water as coolants, with one mixture standing out.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading