Subscribe to CPUs

The Lead

Engineers make sound loud enough to bend light on a computer chip

December 1, 2014 10:08 am | by Univ. of Minnesota | News | Comments

During a thunderstorm, we all know it’s common to hear thunder after we see the lightning. That’s because sound travels much slower (768 mph) than light (670,000,000 mph). Now, Univ. of Minnesota engineering researchers have developed a chip on which both sound wave and light wave are generated and confined together so that the sound can very efficiently control the light.

Engineers take step toward photonic circuits

August 20, 2014 8:35 am | by Richard Cairney, Univ. of Alberta | News | Comments

The invention of fiber optics revolutionized the way we share information, allowing us to...

Researchers unveil experimental 36-core chip

June 23, 2014 7:38 am | by Larry Hardesty, MIT News Office | News | Comments

The more cores a computer chip has, the bigger the problem of communication between cores...

Want your computer to go faster? Just add light

February 25, 2014 1:26 pm | by Angela Herring, Northeastern Univ. | News | Comments

Last year, a physicist and a mechanical engineer...

View Sample

FREE Email Newsletter

How do you build a large-scale quantum computer?

February 25, 2014 1:13 pm | by E. Edwards, Joint Quantum Institute | News | Comments

The physical implementation of a full-scale universal quantum computer remains an extraordinary challenge for physicists, mainly because existing approaches lose their “quantum-ness” as they are scaled up. At the Joint Quantum Institute, a new modular architecture is being explored that offers scalability to large numbers of qubits, and its components have been tested and are available.

New Intel CEO shares vision of computing future, quark chip

September 12, 2013 7:45 am | News | Comments

During this week’s Intel Developer Forum, new Intel CEO Brian Krzanich announced a number of near-term changes for the company’s product line, including new LTE and 14-nm products, and a lower-power product family called Quark directed at future wearable electronics devices.

Chip cleans up common flaws in amateur photographs

February 19, 2013 8:28 am | by Helen Knight, MIT News correspondent | News | Comments

Your smartphone snapshots could be instantly converted into professional-looking photographs with just the touch of a button, thanks to a processor chip developed at Massachusetts Institute of Technology. The chip can perform tasks such as creating more realistic or enhanced lighting in a shot without destroying the scene's ambience, in just a fraction of a second. The technology could be integrated with any smartphone, tablet computer, or digital camera.


Spin-orbit qubits are right at home in electrical circuits

October 18, 2012 8:08 am | News | Comments

Qubit-based computing that exploits spooky quantum effects like entanglement and superposition will speed up factoring and searching calculations far above what can be done with mere zero-or-one bits. A Princeton University and Joint Quantum Institute collaboration has made strides in domesticating this quantum weirdness with the announcement of the successful excitation of a spin qubit using a resonant cavity, which senses the presence of the qubit as if it were a bit of electrical capacitance.

Making Web applications more efficient

September 4, 2012 3:54 am | by Larry Hardesty, MIT News Office | News | Comments

Most major Websites maintain huge databases. Almost any transaction on a shopping site, travel site, or social networking site require multiple database queries, which can slow response time. Now, researchers at Massachusetts Institute of Technology have developed a system that automatically streamlines Websites' database access patterns, making the sites up to three times as fast.

IBM introduces new powerful mainframe computers

August 29, 2012 3:24 am | News | Comments

On Tuesday IBM introduced a new line of mainframe computers the company calls its most powerful and technologically advanced ever. The zEnterprise EC12 mainframe server is designed to help users securely and quickly sift through massive amounts of data. Running at 5.5 GHz, IBM said the microprocessor that powers the mainframe is the fastest chip in the world.

Researchers demonstrate that 15=3x5 about half of the time

August 20, 2012 7:56 am | News | Comments

A research team at the University of Santa Barbara has designed and fabricated a quantum processor capable of factoring a composite number—in this case the number 15—into its constituent prime factors, 3 and 5. Although modest compared to, say, a 600-digit number, the algorithm they developed was right about half the time, matching theoretical predictions and marking a milestone on the trail of building a stronger quantum computer.

DARPA technology to cool chips from within

June 10, 2012 12:42 pm | News | Comments

Continued miniaturization and increased component density in today’s electronics have pushed heat generation and power dissipation to unprecedented levels. Current technology is keeping pace, but greatly adding to the size and weight of electronics. As a solution DARPA pursuing a new thermal management strategy that place microfluidic cooling inside the chip substrate.


Computing experts unveil superefficient “inexact” chip

May 17, 2012 7:17 am | News | Comments

In a recent project that has challenged the notion that the best chip is the most accurate one, a research team has unveiled this week its prototype “inexact” computer chip. By allowing the chip to make a few mistakes, developers were able to slash the power consumption of the chip dramatically. The result is a chip at least 15 times more efficient than today’s technology.

New multicore chip hardware models avoid “deadlock”

April 13, 2012 4:49 am | by Larry Hardesty, MIT News Office | News | Comments

Multicore chips are common, but chips of the future are likely to have hundreds or even thousands of cores. Software simulations will work up to a point, but hardware models facilitated by programmable chips that won’t get bogged down by resource requests will be required to test designs. A new system to improve the efficiency of such model has been developed by Massachusetts Institute of Technology computer scientists.

ASTRON and IBM collaborate to explore origins of the universe

April 2, 2012 5:19 am | News | Comments

The international Square Kilometre Array (SKA) will be the world’s largest and most sensitive radio telescope when it is built, and will require the processing power of several million of today’s fastest computers to collect the exabytes of data it will generate. IBM and the Netherlands Institute for Radio Astronomy (ASTRON) are embarking on a five-year project to solve this data collection problem.

Software simulation accurately tests unbuilt chips

March 9, 2012 10:34 am | by Larry Hardesty, MIT News Office | News | Comments

For the last decade or so, computer chip manufacturers have been increasing the speed of their chips by giving them extra processing units, or “cores.” But more cores means greater risks if new designs don’t work. A new software-simulation system promises much more accurate evaluation of promising—but potentially fault-ridden—multicore-chip designs.

IBM prototype tops “big data” competition

November 17, 2011 9:34 am | News | Comments

Following on the news that the Japanese K computer topped other high-performance computers at the SC11 conference, the National Nuclear Security Administration’s IBM Blue Gene/Q prototype has topped the Graph500, an increasingly competitive ranking that stresses supercomputer performance on “big data” scaling problems rather than purely arithmetic computations.


K computer tops SC11’s HPC challenge

November 16, 2011 10:13 am | News | Comments

After topping both the June and November 2011 TOP500 fastest computers list, RIKEN and Fujitsu’s “K” computer has bolstered its status as an all-around performer but ranking at the top in all four benchmarks of the 2011 HPC Challenge Awards at SC11 in Seattle.

NICS to begin strategic engagement with Intel

November 15, 2011 12:14 pm | News | Comments

The University of Tennessee's National Institute for Computational Sciences announced at the SC11 conference that it has entered a multi-year strategic engagement with Intel Corporation to pursue development of next-generation, high-performance computing solutions based on the Intel’s Many Integrated Core architecture.

Research team to develop energy-efficient 3D CPU

November 15, 2011 3:53 am | News | Comments

Researchers from North Carolina State University are developing a 3D central processing unit (CPU) with the goal of boosting energy efficiency by 15 to 25%. The work is being done under a $1.5 million grant from the Intel Corporation.

The future of chip manufacturing

June 30, 2011 3:56 am | by Larry Hardesty, MIT News Office | News | Comments

MIT researchers show how to make e-beam lithography, commonly used to prototype computer chips, more practical as a mass-production technique.

Bandwidth wizardry improves efficiency of multi-core chips

May 26, 2011 6:30 am | by Matt Shipman | News | Comments

Researchers from North Carolina State University have developed two new techniques related to common efficiency strategies like prefetching and bandwidth allocation to help maximize the performance of multi-core computer chips by allowing them to retrieve data more efficiently, which boosts chip performance by 10 to 40%.

Unique processor chips with tiny radar transceivers

May 6, 2011 12:05 pm | by Nils Ragnar Løvhaug/Else Lie | News | Comments

Norwegian company Novelda has recently developed silicon chips which measure just 2 x 2 mm, but contain nearly two million transistors and 512 radars that simultaneously sense and transmit information. Unlike conventional radar devices, which must be placed several meters away from the object to be measured, Novelda's can be located directly on the object.

Researchers produce leaner, greener microchips

March 17, 2011 4:10 am | News | Comments

An international team of computing experts from the United States, Switzerland, and Singapore has created a breakthrough technique for doubling the efficiency of computer chips by trimming away the portions that are rarely used.

Discovery could lead to better memory chips

March 15, 2011 5:58 am | News | Comments

Engineering researchers at the Univ. of Michigan have found a way to improve the performance of ferroelectric materials, which have the potential to make memory devices with more storage capacity than magnetic hard drives and faster write speed and longer lifetimes than flash memory.

Commercial nanofabrication tools may make silicon optical chips more accessible

March 3, 2011 5:09 am | News | Comments

In an effort to make it easier to build inexpensive, next-generation silicon-based electro-optical chips, which allow computers to move information with light and electricity, a research team is developing design tools and using commercial nanofabrication tools.

The future of multicore: Language barrier

March 1, 2011 3:03 am | by Larry Hardesty, MIT News Office | News | Comments

Over the week, the R&D Daily has been highlighting MIT's Project Angstrom, an ambitious initiative to create tomorrow’s computing systems from the ground up by developing new hardware, a new operating system, and sophisticated programming language to take advantage of multicore chips. MIT's Larry Hardesty, in the last part of this series, discusses how programmers will need software development systems that will let multicore chips express themselves in fundamentally new ways.

Atomic antennas transmit quantum information across a microchip

February 28, 2011 4:21 am | News | Comments

An Austrian research group led by physicist Rainer Blatt suggests a fundamentally novel architecture for quantum computation. They have experimentally demonstrated quantum antennae, which enable the exchange of quantum information between two separate memory cells located on a computer chip. This offers new opportunities to build practical quantum computers.

Increasing processor efficiency by shutting off the lights

February 28, 2011 3:52 am | News | Comments

Today's consumers expect mobile devices that are increasingly small, yet ever-more powerful. They want all the bells and whistles, however, these technologies suck up energy. To promote energy-efficient multitasking, a Harvard Univ. grad student has developed and demonstrated a new device with the potential to reduce the power usage of modern processing chips.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.