Advertisement
Agriculture
Subscribe to Agriculture

The Lead

Scientists identify genes that could lead to tough, disease-resistant rice

April 1, 2014 3:28 pm | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

As the Earth’s human population marches toward 9 billion, the need for hardy new varieties of grain crops has never been greater. It won’t be enough to yield record harvests under perfect conditions; new grains must also be able to handle stress from climate changes. Researchers in Michigan have recently identified a set of genes that could be key to the development of the next generation of super rice.

Satellite shows high productivity from U.S. corn belt

March 31, 2014 12:39 pm | by Kathryn Hansen, NASA's Goddard Space Flight Center | News | Comments

Data from satellite sensors show that during the...

Team converts sugarcane to a cold-tolerant, oil-producing crop

February 24, 2014 11:23 am | by Diana Yates, Univ. of Illinois | News | Comments

A multi-institutional team reports that it can...

Oil composition boost makes hemp a cooking contender

February 11, 2014 8:24 am | News | Comments

Scientists in the U.K. have reported the...

View Sample

FREE Email Newsletter

Study uses neutron scattering, supercomputing to demystify biofuel production

November 14, 2013 7:23 am | News | Comments

Researchers studying more effective ways to convert woody plant matter into biofuels have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy. Experimental techniques including neutron scattering and x-ray analysis with supercomputer simulations revealed unexpected findings about what happens to water molecules trapped between cellulose fibers.

Research grant seeks to reduce crops' fertilizer dependence

October 18, 2013 9:56 am | News | Comments

A research team including a Penn State chemical engineer was recently awarded a $3.9 million National Science Foundation grant to understand how blue-green algae convert nitrogen into oxygen. The objective is to learn how to "transplant" the nitrogen fixing capability of one species to another.

Study of photosynthesis clears the path to developing new super-crops

October 17, 2013 1:28 pm | News | Comments

Around 3% of all plants use an advanced form of photosynthesis, which allows them to capture more carbon dioxide, use less water, and grow more rapidly. This phenomenon had been a mystery, but researchers have used a mathematical analysis to uncover a number of tiny changes in the plants' physiology that allow them to grow more quickly, using a third as much water as other plants and capturing around 13 times more carbon dioxide.

Advertisement

Device speeds concentration step in food-pathogen detection

October 14, 2013 1:39 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have developed a system that concentrates foodborne salmonella and other pathogens faster than conventional methods by using hollow thread-like fibers that filter out the cells. The machine, called a continuous cell concentration device, could make it possible to routinely analyze food or water samples to screen for pathogens within a single work shift at food processing plants.

“PhytoBot” captures plants growth in unprecedented detail

September 19, 2013 10:19 am | News | Comments

Watching a plant grow and develop roots can be a long and tiresome process, but watching this process closely can reveal what happens to a genetically modified organism. A recently developed system from IntelLiDrives and the Univ. of Wisconsin-Madison uses robotic cameras and computerized motion control systems to make this process easier.

Sharing the risks and costs of biomass crops

September 4, 2013 4:09 pm | News | Comments

Farmers who grow corn and soybeans can take advantage of government price support programs and crop insurance, but similar programs are not available for those who grow biomass crops. A new study recommends a framework for contracts between growers and biorefineries to help spell out expectations and designate who will assume the risks and costs.

International collaborations to design crops of the future

August 23, 2013 12:19 pm | News | Comments

Four teams of researchers in the United States and the United Kingdom recently were awarded more than $12 million to begin a program of novel research to revolutionize current farming methods by giving crops the ability to thrive without using costly, polluting artificial fertilizers.

Existing cropland could feed 4 billion more people

August 1, 2013 3:24 pm | News | Comments

The world’s croplands could boost food available for people by 70% without clearing more land, according to research from the Univ. of Minnesota. This could be accomplished just by shifting from producing animal feed and biofuels to producing exclusively food for human consumption, researchers say.

Advertisement

Gulf “dead zone” above average but not near record

July 31, 2013 8:02 am | by Janet McConnaughey, Associated Press | News | Comments

This summer's "dead zone" at the bottom of the Gulf of Mexico, where there's so little oxygen that starfish suffocate, is bigger than average but doesn't approach record size as scientists had predicted, according to findings released this week. The area of low oxygen covers 5,840 square miles of the Gulf floor—roughly the size of Connecticut.

Technology could enable all crops to take nitrogen from the air

July 26, 2013 9:20 am | News | Comments

All plants need nitrogen to convert into ammonia, but only a small number of plants can fix nitrogen from the atmosphere. The rest are helped by synthetic fertilizers, which have been blamed for nitrogen pollution. A scientist in the U.K., Edward Cocking, has found a specific strain of nitrogen-fixing bacteria in sugar cane which he discovered could intracellularly colonize all major crop plants. The technology is being commercialized.

Drought response identified in potential biofuel plant

July 15, 2013 10:39 pm | by Hannah Y Cheng, Penn State Univ. | News | Comments

Jatropha, a plant variety that has been pursued as possible source for biofuel, has seeds with high oil content. But the oil's potential as a biofuel is limited because, for large-scale production, this shrub-like plant needs the same amount of care and resources as crop plants. By focusing on the plant’s drought response and using engineered genetics, the scientists have learned more about potentially improving the plant’s function.

Robots to revolutionize U.S. farms, ease labor woes

July 15, 2013 8:09 am | by Gosia Wozniacka and Terence Chea, Associated Press | News | Comments

Researchers are now designing robots for the last frontier of agricultural mechanization: fruits and vegetables. Sensitive to bruising, these crops have resisted mechanization. But engineers from Silicon Valley have been working on the Lettuce Bot, which can thin a field of lettuce in the time it takes about 20 works to do the job by hand.

Scientists identify thousands of plant genes activated by ethylene gas

June 11, 2013 5:56 pm | News | Comments

Ways to ripen, or spoil, fruit have been known for thousands of years—as the Bible can attest—but now the genes underlying these phenomena of nature have been revealed. Researchers led by the Salk Institute have traced the thousands of genes in a plant that are activated once ethylene, a gas that acts as a plant growth hormone, is released. This study is the first such comprehensive genomic analysis of ethylene's biological trigger.

Advertisement

How do you feed 9 billion people?

June 10, 2013 9:23 am | News | Comments

An international team of scientists has developed crop models to better forecast food production to feed a growing population—projected to reach 9 billion by mid-century—in the face of climate change. The team recently unveiled an all-encompassing modeling system that integrates multiple crop simulations with improved climate change models.

Platinum nanoparticles may keep fruit fresh longer

May 13, 2013 8:16 am | News | Comments

Ripening fruit, vegetables, and flowers release ethylene, which works as a plant hormone. Ethylene accelerates ripening, so other unripened fruit also begins to ripen—fruit and vegetables quickly spoil and flowers wilt. researchers in Japan have now introduced a new catalytic system for the fast and complete degradation of ethylene. This could keep the air in warehouses ethylene-free, keeping perishable products fresh longer.

Team creates potential food source from non-food plants

April 16, 2013 8:25 am | News | Comments

Starch is one of the most important components of the human diet and provides 20 to 40% of our daily caloric intake. A team of Virginia Tech researchers has succeeded in transforming cellulose into starch in a process that could provide a previously untapped nutrient source from plants not traditionally thought of as food crops. The process works with cellulose from any plant.

Dow AgroSciences opens new facility at global headquarters

April 11, 2013 2:57 am | News | Comments

The Dow Chemical Company and Dow AgroSciences officially opened a new 175,000-square-foot R&D facility this week. Part laboratory, part greenhouse, the laboratory is part of a global growth plan for Dow AgroSciences’ research efforts for the development and commercialization of new crop protection and seed, traits, and oils products for growers around the world.

Metabolic fingerprinting: Proteomics IDs protein in pollen drops

April 11, 2013 2:35 am | News | Comments

Proteomics is a powerful technique for examining the structure and function of the proteome. For some organisms, proteomics can uncover the relationship between DNA, RNA, and the production of proteins. For those without a sequenced genome, proteomics can finding new proteins. In a new study, researchers have demonstrated the suitability of proteomics in determining the composition of gymnosperm pollination drops.

Better monitoring and diagnostics tackle algae biofuel pond crash problem

April 10, 2013 12:28 pm | News | Comments

Sandia National Laboratories is developing a suite of complementary technologies to help the emerging algae industry detect and quickly recover from algal pond crashes, an obstacle to large-scale algae cultivation for future biofuels. The research draws upon Sandia's longstanding expertise in microfluidics technology, its strong bioscience research program and significant internal investments.

Extreme algae blooms the new normal?

April 4, 2013 7:36 am | News | Comments

In 2011, Lake Erie experienced a record-breaking algae bloom that began in the lake's Western region in mid-July and eventually covered an area of 230 square miles. At its peak in October, the bloom had expanded to more than 1,930 square miles, three times greater than any other bloom on record. According to recent research, the bloom was triggered by long-term agricultural practices coupled with extreme precipitation, followed by weak lake circulation and warm temperatures.

Researchers find new way for plants to pass traits to next generation

March 26, 2013 12:50 pm | by Emily Caldwell, Ohio State University | News | Comments

Scientists have shown that an enzyme in corn responsible for reading information from DNA can prompt unexpected changes in gene activity—an example of epigenetics that breaks accepted rules of genetic behavior. Though some evidence has suggested that epigenetic changes can bypass DNA’s influence to carry on from one generation to the next, this is the first study to show that this epigenetic heritability can be subject to selective breeding.

Spinal tap: Using cactus spines to isolate DNA

March 6, 2013 11:05 am | News | Comments

Isolation of DNA from some organisms is a routine procedure. For example, you can buy a kit at your local pharmacy or grocery store that allows you to swab the inside of your cheek and send the sample for DNA sequencing. However, for other organisms, DNA extraction is much more problematic. Researchers at Desert Botanical Garden in Phoenix, Arizona, have developed a novel procedure that greatly simplifies genomic DNA isolation from cactus tissue.

Avoiding virus dangers in “domesticating” wild plants for biofuel use

February 15, 2013 11:36 am | News | Comments

According to Michigan State University plant biologist Carolyn Malmstrom, when we start combining the qualities of different types of plants into one, there can be unanticipated results. In the domestication of wild plants for bioenergy, for example, long-lived plants are being selected for fast growth like annuals. In contrast, perennial plants in nature grow slower, but are usually better equipped to fight off invading viruses. When wild-growing perennials do get infected they can serve as reservoirs for viruses.

Understanding microbes blowing in the wind

February 7, 2013 8:37 am | by Dennis O'Brien | News | Comments

With help from a wind tunnel and the latest DNA technology, U.S. Department of Agriculture scientists are shedding light on the travel patterns of microbes in soils carried off by strong winds. The work has implications for soil health and could lead to management practices that minimize the damage to soils caused by wind erosion.

Wind in the willows boosts biofuel production

January 21, 2013 9:43 am | News | Comments

A curious characteristic of willows is that when they are cultivated for green energy they can yield five times more biofuel if they grow diagonally, compared with those that grow naturally straight up. Scientists were previously unable to explain why some willows produced more biofuel than others, but researchers have now identified a genetic trait that causes this effect and is activated in some trees when they sense they are at an angle, such as where they are blown sideways in windy conditions.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading