National Renewable Energy Laboratory (DOD)
Subscribe to National Renewable Energy Laboratory (DOD)
View Sample

FREE Email Newsletter

New Economy, New Playbook: Part 1

December 10, 2010 6:48 am | by Paul Livingstone | Articles | Comments

Today’s economic and employment realities drive research organizations to develop new strategies.

Prefab solar collector achieves 25% efficiency

August 12, 2010 11:27 am | Award Winners

The Amonix 7700 Solar Power Generator, developed by National Renewable Energy Laboratory and Amonix Inc. can supply 40% more energy than conventional fixed PV panels through the use of high-efficiency solar cells, concentrator Fresnel lenses, and smart controller and tracker technology.

Don’t let photons go to waste

August 11, 2010 7:14 am | Award Winners

National Renewable Energy Laboratory scientists have invented the Black Silicon Nanocatalytic Wet-Chemical Etch, an antireflection etch process that turns silicon wafers black so they absorb 98% of solar radiation, boosting overall photovoltaic performance.


Forget efficiency for now: solar chases $1 per watt

November 19, 2009 5:02 am | Blogs | Comments

Conversion efficiency will always be intrinsic to the success of solar cells, but as one startup is showing us, low cost has its merits, too.

Inexpensive solar collector revamps cost structure

July 27, 2009 7:18 am | Award Winners

The National Renewable Energy Laboratory (Golden, Colo.) and SkyFuel Inc.'s (Arvada, Calif.) SkyTrough Parabolic Trough Solar Concentrating Collector was designed to overcome cost barriers of traditional solar cells by using a new reflector material: a weather-proof, low-cost, high-reflectance polymeric film instead of the traditional heavy, glass-based mirror.

Safety is buried in lithium battery

July 27, 2009 6:32 am | Award Winners

The National Renewable Energy Laboratory (Golden, Colo.) and Planar Energy Devices’ (Orlando, Fla.) PowerPlane UX combines a solid-state lithium battery with a buried-anode architecture—invented at the NREL—to form an intrinsically safe, rechargeable microbattery with an extremely long lifetime.

Better UV protection through time-lapse weathering

July 24, 2009 8:21 am | Award Winners

The unique optical system design and innovative optical components of the UAWS deliver highly concentrated sunlight in the UV spectrum—the wavelength region that does by far the most damage to materials deployed outdoors.

Tough Times Ahead for Government Labs

November 30, 2008 7:00 pm | by Tim Studt | Articles | Comments

The upcoming changes in government leadership will create temporary issues in the government’s network of research labs until new strategies are defined and funded.


Super solar cells

September 24, 2008 3:39 pm | Award Winners

The IMM solar cell is a new class of multijunction solar cells that is the world-record holder for one-sun efficiency (40.8%). Two major innovations make this possible. The first is growing or depositing cell layers in an inverted sequence—from top to bottom—the reverse of the normal order. The second is using a transparent, compositionally graded transition layer to allow the growth of one subcell layer on another.

Practical PV printing

September 24, 2008 3:35 pm | Award Winners

Over the last three decades, researchers and others have envisioned a time when we might be able to do something as simple, fast, and inexpensive as constructing our houses and buildings with PV(photovoltaic)-coated materials to provide the electricity the buildings would need. That vision will soon be a reality with the National Renewable Energy Laboratory's (Golden, Colo.) and HelioVolt Corporation's (Austin, Texas) Hybrid CIGS (copper indium gallium deselenide), an innovative technology for the rapid production of high-quality, low-cost, thin-film CIGS solar cells using the inkjet printing or spraying of liquid precursor inks on substrates in air followed by a fast, energy-efficient printing process.

Hot to generate

August 31, 2007 8:00 pm | Award Winners

Researchers from Spectrolab, Inc. (Sylmar, Calif.) and the National Renewable Energy Laboratory (Golden, Colo.) have collaborated to develop a High-Efficiency Metamorphic Multijunction Concentrator Solar Cell (HEMM) that is the first solar cell to surpass the 40% efficiency barrier. This new technology is a lattice-mismatched triple-junction device that can generate utility-scale electricity with ultra-high performance under high solar concentrations.

Optimizing silicon processing

August 31, 2005 8:00 pm | Award Winners

Researchers at the National Renewable Energy Laboratory, Golden, Colo., in a joint effort with Sinton Consulting, Inc., Boulder, Colo., have developed the Sinton QSSPC Silicon Evaluation System, a system that quickly and accurately determines the quality of silicon starter material by measuring minority-carrier lifetimes, impurities, resistivity, and trapping.

Portable, pliable photovoltaics

August 31, 2004 8:00 pm | Award Winners

Campers, soldiers, and homeowners are the benefactors of the lightweight, flexible, thin-film Copper Indium Gallium diSelenide (CIGS) photovoltaic (PV) modules, developed by researchers at the National Renewable Energy Laboratory, Golden, Colo., and Global Solar Energy, Tucson, Ariz. The modules’ flexible stainless steel backing and CIGS formulation supports a 40% gain in conversion efficiency, nearly twice the power-to-weight ratio, and three times the power-to-volume ratio found in amorphous silicon-based cells.


Photovoltaic modules bolstered

August 31, 2003 8:00 pm | Award Winners

The National Renewable Energy Laboratory, Golden, Colo., with First Solar, LLC, Perrysburg, Ohio, have created a high rate vapor transport deposition (HRVTD) technology for CdTe PV modules. This system enables in-line, continuous manufacture of thin-film photovoltaic (PV) modules and allows PV to broaden its reach into the commercial market by generating 50 W at $2.50/W, a 30% cost reduction.

Tubes self-heal with coating

August 31, 2002 8:00 pm | Award Winners

Manufacturers of heat-exchanger tubes no longer have to turn to expensive titanium alloys and stainless steel to deal with corrosion problems. With the help of the Smart, High-Performance Polyphenylenesulfide (PPS) Coating System, they can go back to using carbon-steel tubes. By lining internal and external tube walls with PPS coating, makers can transform the tubes highly susceptible to corrosion into well-protected ones.

Glass produces energy

August 31, 2002 8:00 pm | Award Winners

More than 150 gas stations incorporate the Power-View Photovoltaic Module, structural material/solar panels that provide 17% of a station’s electricity supply. The research team led by Robert Oswald and Frank Liu from the National Renewable Energy Laboratory, Golden, Colo., and BP Solar, Toano, Va., designed a Power-View module as two pieces of heat-strengthened glass with thin film deposited on the front piece and then laminated to a second piece.

Fiber filters microbes, metals

August 31, 2002 8:00 pm | Award Winners

A new material, developed by a research team at the National Renewable Energy Laboratory, Golden, Colo.; Argonide Corp., Sanford, Fla.; and the Design Technology Center, Russian Academy of Sciences, Tomsk, is the first fiber to perform bioactive filtration. NanoCeram Nanoalumina Fiber eliminates pathogens from water or other fluids, and has applications in chemisorption of heavy metals and bone tissue engineering.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.