Advertisement
National Institute of Standards and Technology (DOC)
Subscribe to National Institute of Standards and Technology (DOC)
View Sample

FREE Email Newsletter

Scientists develop 3-D SEM metrology for 10-nm structures

March 24, 2014 9:55 pm | News | Comments

Researchers at NIST have devised an idea for determining the 3-D shape of features as small as 10-nm wide. The model-based method compares data from scanning electron microscope images with stored entries in a library of 3-D shapes to find a match and to determine the shape of the sample. The work provides a powerful new way to characterize nanostructures.

NIST zero-energy house gives back to the grid

March 14, 2014 7:50 am | News | Comments

Over the first six months in their special, new, four-bedroom home in suburban Maryland, the Nisters, a prototypical family of four, earned about $40 by exporting 328 kW-h of electricity into the local grid, while meeting all of their varied energy needs. These virtual residents of the Net-Zero Energy Residential Test Facility (NZERTF) on the campus of NIST didn't have to skimp the creature comforts of 21st century living, either.

Assessing the chemical composition of a MOF with nanoscale resolution

March 12, 2014 8:38 am | News | Comments

Researchers have applied a novel microscopy technique to characterize metal-organic framework (MOF) materials, potentially opening a pathway for engineering the chemical properties of these materials at the nanoscale. MOFs are composed of metal ions connected by organic linker molecules to form 3-D-crystalline networks of nanopores with high surface areas, leading to applications in catalysis, chemical separation and sensing.

Advertisement

Physicists discover “quantum droplet” in semiconductor

February 26, 2014 3:25 pm | News | Comments

JILA physicists used an ultrafast laser and help from German theorists to discover a new semiconductor quasiparticle, a handful of smaller particles that briefly condense into a liquid-like droplet. Quasiparticles are composites of smaller particles that can be created inside solid materials and act together in a predictable way.

Microanalysis technique makes the most of small nanoparticle samples

February 24, 2014 10:31 am | News | Comments

Researchers from NIST and the FDA have demonstrated that they can make sensitive chemical analyses of minute samples of nanoparticles by, essentially, roasting them on top of a quartz crystal. The NIST-developed technique, "microscale thermogravimetric analysis," holds promise for studying nanomaterials in biology and the environment, where sample sizes often are quite small and larger-scale analysis won't work.

NIST atomtronic study may pave the way for new devices

February 20, 2014 9:04 am | News | Comments

While pursuing the goal of turning a cloud of ultracold atoms into a completely new kind of circuit element, physicists at NIST have demonstrated that such a cloud, known as a Bose-Einstein condensate, can display a sort of "memory." The findings pave the way for a host of novel devices based on "atomtronics," an emerging field that offers an alternative to conventional electronics.

Technology decodes more information from single photons

February 12, 2014 1:02 pm | News | Comments

It's not quite Star Trek communications—yet. But long-distance communications in space may be easier now that researchers have designed a clever detector array that can extract more information than usual from single particles of light. Described in a new paper, the NIST/JPL array-on-a-chip easily identifies the position of the exact detector in a multi-detector system that absorbs an incoming infrared light particle, or photon.

Method evaluates response to oxidation in live cells

February 12, 2014 9:56 am | News | Comments

Researchers at NIST have developed a new method for accurately measuring a key process governing a wide variety of cellular functions that may become the basis for a health checkup for living cells. The NIST technique measures changes in a living cell's internal redox (reduction-oxidation) potential, a chemistry concept that expresses the favorability of reactions in which molecules or atoms either gain or lose electrons.

Advertisement

Study suggests ways to improve common furniture fire test

February 11, 2014 8:19 am | News | Comments

NIST and American Univ. researchers report in a new study that the bench-scale test widely used to evaluate whether a burning cigarette will ignite upholstered furniture may underestimate the tendency of component materials to smolder when these materials are used in sofas and chairs supported by springs or cloth. The study comes as regulations and methods for evaluating ignition in furniture are undergoing scrutiny.

Shape-sifting: NIST categorizes bio-scaffold by characteristic cell shapes

February 10, 2014 7:49 am | News | Comments

Shape is thought to play an important role in the effectiveness of cells grown to repair or replace damaged tissue in the body. To help design new structures that enable cells to "shape up," researchers at NIST have come up with a way to measure, and more importantly, classify, the shapes cells tend to take in different environments.

Scientists find more precise way to measure neutron lifetime

February 5, 2014 12:32 pm | News | Comments

A team NIST scientists, with collaborators elsewhere, has achieved a five-fold reduction in the dominant uncertainty in an experiment that measured the mean lifetime of the free neutron, resulting in a substantial improvement of previous results. However, the accomplishment reveals a puzzling discrepancy when compared to different method, and researchers are planning to re-run the experiment in upgraded form.

Cell membrane studied as future diagnostic tool

January 31, 2014 9:27 am | News | Comments

Researchers at NIST and in Lithuania have used a NIST-developed laboratory model of a simplified cell membrane to accurately detect and measure a protein associated with a serious gynecological disease, bacterial vaginosis (BV), at extraordinarily low concentrations. The work illustrates how the artificial membrane could be used to improve disease diagnosis.

Nearly everyone uses piezoelectrics, but do we know how they work?

January 31, 2014 8:00 am | News | Comments

Though piezoelectrics are a widely used technology, there are major gaps in our understanding of how they work. Researchers at NIST and in Canada believe they've learned why one of the main classes of these materials, known as relaxors, behaves in distinctly different ways from the rest and exhibit the largest piezoelectric effect. And the discovery comes in the shape of a butterfly.

Advertisement

Strontium atomic clock sets new records in precision and stability

January 27, 2014 7:41 am | News | Comments

Heralding a new age of terrific timekeeping, a research group led by a NIST physicist has unveiled an experimental strontium atomic clock that has set new world records for both precision and stability—key metrics for the performance of a clock. The JILA strontium lattice clock is about 50% more precise than the record holder of the past few years, NIST’s quantum logic clock.

Quantum physics could make secure, single-use computer memories possible

January 15, 2014 3:49 pm | News | Comments

Computer scientist Yi-Kai Liu at NIST has devised a way to make a security device that has proved notoriously difficult to build: a "one-shot" memory unit, whose contents can be read only a single time. The innovation, which uses qubits and conjugate coding, shows in theory how the laws of quantum physics could allow for the construction of such memory devices.

Carbon nanotubes promise improved flame-resistant coating

January 15, 2014 9:43 am | News | Comments

Using an approach akin to assembling a club sandwich at the nanoscale, NIST researchers have succeeded in crafting a uniform, multi-walled carbon nanotube-based coating that greatly reduces the flammability of foam commonly used in upholstered furniture and other soft furnishings. The flammability of the nanotube-coated polyurethane foam was reduced 35% compared with untreated foam.

New tests explore safety of nanotubes in plastics over time

December 18, 2013 9:03 am | News | Comments

Modern epoxies are frequently made stronger, lighter and more resilient with the addition of multiwalled carbon nanotubes (MWCNTs), a special form of carbon that under a microscope looks like rolls of chicken wire. Few analytical methods have been employed, however, to determine the effect this material has on environmental or health safety. NIST has developed a suite of tests for evaluating the performance of these nanocomposite materials.

Team develops “spinning trap” to measure electron roundness

December 6, 2013 9:19 am | News | Comments

Are electrons truly round? More specifically, is the electron’s charge between its poles uniform? A group at JILA has tackled this difficult question and has developed a method of spinning electric and magnetic fields around trapped molecular ions to measure the tiny electrons. They haven’t yet matched other electric dipole moment measurement techniques, but eventually the new method should surpass them.

Added molecules allow MOFs to conduct electricity

December 5, 2013 3:54 pm | News | Comments

Scientists from NIST and Sandia National Laboratories have added something new to a family of engineered, high-technology materials called metal-organic frameworks (MOFs): the ability to conduct electricity. This breakthrough—conductive MOFs—has the potential to make these already remarkable materials even more useful, particularly for detecting gases and toxic substances.

Characterizing solar cells with nanoscale precision

December 5, 2013 9:23 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have demonstrated a new low-energy electron beam technique and used it to probe the nanoscale electronic properties of grain boundaries and grain interiors in cadmium telluride (CdTe) solar cells. Their results suggest that controlling material properties near the grain boundaries could provide a path for increasing the efficiency of such solar cells.

NIST announces new center to enable “materials by design”

December 3, 2013 2:30 pm | News | Comments

A consortium led by Northwestern Univ. will establish a new NIST-sponsored center of excellence for advanced materials research. The Center for Hierarchical Materials Design (CHiMaD) will be funded in part by a $25 million award from NIST over five years and will focus on computational tools, databases and experimental techniques to allow “materials by design”, a major goal of the Materials Genome Initiative.

How losing information can benefit quantum computing

November 26, 2013 8:34 am | News | Comments

Suggesting that quantum computers might benefit from losing some data, physicists at NIST have entangled—linked the quantum properties of—two ions by leaking judiciously chosen information to the environment. The NIST experiments used two beryllium ions as quantum bits (qubits) to store quantum information and two partner magnesium ions, which were cooled with three ultraviolet laser beams to release heat.

New spectrometry standard for handheld chemical detectors aids first responders

October 25, 2013 11:18 am | News | Comments

When it comes to detectors for dangerous chemicals, toxins or nefarious germs, smaller and faster is better. But size and speed must still allow for accuracy, especially when measurements by different instruments must give the same result. The recent publication of a new NIST standard provides confidence that results from handheld chemical detectors can be compared, apples-to-apples.

NIST measures laser power with portable scale

October 24, 2013 12:41 pm | News | Comments

Researchers have demonstrated a new method for measuring laser power by reflecting the light off a mirrored scale, which behaves as a force detector. Although it may sound odd, the technique is promising as a simpler, faster, less costly and more portable alternative to conventional methods of calibrating high-power lasers used in manufacturing, the military and research.

Team “gets the edge” on photon transport in silicon

October 24, 2013 8:06 am | News | Comments

Scientists have a new way to edge around a difficult problem in quantum physics, now that a research team from NIST and the Joint Quantum Institute have proved their recent theory about how particles of light flow within a novel device they built. While the problem itself may be unfamiliar to many, the team's solution could help computer designers use light instead of electricity to carry information in computer circuits.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading