Advertisement
Lawrence Orlando Berkeley National Laboratory (DOE)
Subscribe to Lawrence Orlando Berkeley National Laboratory (DOE)

The Lead

Efficient Bioengineering

August 22, 2014 2:50 pm | Award Winners

Lawrence Berkeley National Laboratory’s Tissue-Specific Cell-Wall Engineering is a powerful new method for rapidly transforming crops into biological factories. The technology, a suite of high-precision genetic tools and procedures, makes it possible to change plant traits in a highly selective, tissue-specific fashion.

A Closer Look at 3-D Cell Cultures

August 22, 2014 2:14 pm | Award Winners

It’s well known that compared with 2-D cell culture models, 3-D cell culture models have...

Shaping the future of nanocrystals

August 22, 2014 8:55 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | Videos | Comments

The first direct observations of how facets form and develop on platinum nanocubes point the way...

Researchers map quantum vortices inside superfluid helium nanodroplets

August 22, 2014 7:41 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Scientists have, for the first time, characterized so-called quantum vortices that swirl...

View Sample

FREE Email Newsletter

Microarray for Complex Chemotyping

August 21, 2014 4:05 pm | Award Winners

Whether the application is biofuels, microbial ecological investigation or medical research, Lawrence Berkeley National Laboratory’s Berkeley Lab Multiplex Chemotyping Microarray (MCM) has proven to be the most powerful and precise system for investigations of biomass at the molecular level. MCM performs rapid chemical analyses of prospective biofuel crops and microbial communities by combining high-throughput micro-contact printing technology with high-fidelity vibrational spectroscopy and mass spectrometry.

NMR using Earth’s magnetic field

August 20, 2014 8:19 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Earth’s magnetic field, a familiar directional indicator over long distances, is routinely probed in applications ranging from geology to archaeology. Now it has provided the basis for a technique which might, one day, be used to characterize the chemical composition of fluid mixtures in their native environments.

Study: Price of wind energy in U.S. at all-time low

August 19, 2014 9:42 am | by Allen Chen, Lawrence Berkeley National Laboratory | News | Comments

Wind energy pricing is at an all-time low, according to a new report released by the U.S. Dept. of Energy and prepared by Lawrence Berkeley National Laboratory. The prices offered by wind projects to utility purchasers averaged just $25/MWh for projects negotiating contracts in 2013, spurring demand for wind energy.

Advertisement

Bionic liquids from lignin

August 19, 2014 7:44 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon—bionic liquids. Researchers at the Joint BioEnergy Institute have developed “bionic liquids” from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

Researchers develop molecular probes for the study of metals in brain

August 18, 2014 8:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The human brain harbors far more copper, iron and zinc than anywhere else in the body. Abnormally high levels of these metals can lead to disorders such as Alzheimer’s and Parkinson’s diseases. Chris Chang, a faculty chemist with Berkeley Lab’s Chemical Sciences Div., has spent the past several years developing new probes and techniques for imaging the molecular activity of these metals in the brain.

Mysteries of space dust revealed

August 18, 2014 8:03 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

The first analysis of space dust collected by a special collector onboard NASA’s Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks, which likely originated from beyond our solar system, are more complex in composition and structure than previously imagined. The analysis opens a door to studying the origins of the solar system and possibly the origin of life itself.

Bottling up sound waves

August 4, 2014 3:23 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

There’s a new wave of sound on the horizon carrying with it a broad scope of tantalizing potential applications, including advanced ultrasonic imaging and therapy, and acoustic cloaking, levitation and particle manipulation. Researchers with Lawrence Berkeley National Laboratory have developed a technique for generating acoustic bottles in open air that can bend the paths of sound waves along prescribed convex trajectories.

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

Advertisement

New assay tool characterizes plant sugar transporters

July 28, 2014 4:54 pm | News | Comments

A powerful new tool that could help advance the genetic engineering of “fuel” crops bioenergy, has been developed by researchers with the Joint BioEnergy Institute. Their new, unique assay enabled them to analyze nucleotide sugar transporter activities in Arabidopsis, a promising source of plant biomass, and characterize a family of six nucleotide sugar transporters that has never before been described.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Molecule could lead to new way to repair tendons

July 25, 2014 8:15 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

It’s an all-too familiar scenario for many people. You sprain your ankle or twist your knee. If you’re an adult, the initial pain is followed by a long road of recovery, with no promise that the torn ligament or tendon will ever regain its full strength. That’s because tendon and ligament cells in adults produce little collagen, the fibrous protein that is used to build new tendon and ligament tissue.

Tiny laser sensor heightens bomb detection sensitivity

July 21, 2014 7:45 am | by Sarah Yang, Media Relations, UC Berkeley | News | Comments

New technology under development at the Univ. of California, Berkeley could soon give bomb-sniffing dogs some serious competition. A team of researchers has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives.

First ab initio method for characterizing hot carriers

July 18, 2014 8:19 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. Hot carriers are electrical charge carriers with significantly higher energy than charge carriers at thermal equilibrium.

Advertisement

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Postcards from the photosynthetic edge

July 10, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A crucial piece of the puzzle behind nature’s ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided by an international collaboration of scientists led by researchers with the Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory.

Up in flames: Evidence confirms combustion theory

July 1, 2014 10:06 am | News | Comments

Researchers at Lawrence Berkeley National Lab and the Univ. of Hawaii have uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. The finding could help combustion chemists make more-efficient, less-polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics.

Researchers detect smallest force ever measured

June 27, 2014 7:29 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

What is believed to be the smallest force ever measured has been detected by researchers with the Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley. Using a combination of lasers and a unique optical trapping system that provides a cloud of ultracold atoms, the researchers measured a force of approximately 42 yoctonewtons.

Advanced Light Source provides new look at skyrmions

June 25, 2014 3:07 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Skyrmions have been observed for the first time using x-rays. An international collaboration of researchers working at the Advanced Light Source observed skyrmions in copper selenite an insulator with multiferroic properties. The results not only hold promise for ultra-compact data storage and processing, but may also open up entire new areas of study in quantum topology.

A new resource for advanced biofuels research

June 25, 2014 8:21 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers at the Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls. The idea behind “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.

Dynamic spectroscopy duo

June 17, 2014 1:34 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From allowing our eyes to see, to enabling green plants to harvest energy from the sun, photochemical reactions are ubiquitous and critical to nature. Photochemical reactions also play essential roles in high technology. Using photochemical reactions to our best advantage requires a deep understanding of the interplay between the electrons and atomic nuclei within a molecular system after that system has been excited by light.

Precision physics of antiatoms

June 16, 2014 7:58 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Hydrogen is a neutral atom. Its single electron orbits a single proton, and the net effect is no electrical charge. But what about hydrogen’s antimatter counterpart, antihydrogen? Made of a positron that orbits an antiproton, the antihydrogen atom should be neutral too. Various results have indicated as much, but because the charge of antiatoms is difficult to measure, it has remained an open question.

Manipulating and detecting ultra-high-frequency sound waves

June 12, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An advance has been achieved towards next-generation ultrasonic imaging with potentially 1,000 times higher resolution than today’s medical ultrasounds. Researchers with Lawrence Berkeley National Laboratory have demonstrated a technique for producing, detecting and controlling ultra-high-frequency sound waves at the nanometer scale.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Researchers create nanoparticle thin films that self-assemble in one minute

June 10, 2014 7:51 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with Lawrence Berkeley National Laboratory have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Evolution of a bimetallic nanocatalyst

June 9, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multinational laboratory collaboration has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading