Advertisement
Lawrence Orlando Berkeley National Laboratory (DOE)
Subscribe to Lawrence Orlando Berkeley National Laboratory (DOE)

The Lead

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

New assay tool characterizes plant sugar transporters

July 28, 2014 4:54 pm | News | Comments

A powerful new tool that could help advance the...

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport...

Molecule could lead to new way to repair tendons

July 25, 2014 8:15 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

It’s an all-too familiar scenario for many people. You sprain your ankle or twist your knee. If...

View Sample

FREE Email Newsletter

Tiny laser sensor heightens bomb detection sensitivity

July 21, 2014 7:45 am | by Sarah Yang, Media Relations, UC Berkeley | News | Comments

New technology under development at the Univ. of California, Berkeley could soon give bomb-sniffing dogs some serious competition. A team of researchers has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives.

First ab initio method for characterizing hot carriers

July 18, 2014 8:19 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. Hot carriers are electrical charge carriers with significantly higher energy than charge carriers at thermal equilibrium.

Fundamental chemistry findings could help extend Moore’s Law

July 15, 2014 3:49 pm | by Kate Greene, Berkeley Lab | News | Comments

The doubling of transistors on a microprocessor occurs roughly every two years, and is the outcome of what is called Moore’s Law. In a bid to continue this trend of decreasing transistor size and increasing computation and energy efficiency, chip-maker Intel has partnered with Lawrence Berkeley National Laboratory to design an entirely new kind of photoresist, one that combines the best features of two existing types of resist.

Advertisement

Postcards from the photosynthetic edge

July 10, 2014 7:54 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A crucial piece of the puzzle behind nature’s ability to split the water molecule during photosynthesis that could help advance the development of artificial photosynthesis for clean, green and renewable energy has been provided by an international collaboration of scientists led by researchers with the Lawrence Berkeley National Laboratory and the SLAC National Accelerator Laboratory.

Up in flames: Evidence confirms combustion theory

July 1, 2014 10:06 am | News | Comments

Researchers at Lawrence Berkeley National Lab and the Univ. of Hawaii have uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. The finding could help combustion chemists make more-efficient, less-polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics.

Researchers detect smallest force ever measured

June 27, 2014 7:29 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

What is believed to be the smallest force ever measured has been detected by researchers with the Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley. Using a combination of lasers and a unique optical trapping system that provides a cloud of ultracold atoms, the researchers measured a force of approximately 42 yoctonewtons.

Advanced Light Source provides new look at skyrmions

June 25, 2014 3:07 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Skyrmions have been observed for the first time using x-rays. An international collaboration of researchers working at the Advanced Light Source observed skyrmions in copper selenite an insulator with multiferroic properties. The results not only hold promise for ultra-compact data storage and processing, but may also open up entire new areas of study in quantum topology.

A new resource for advanced biofuels research

June 25, 2014 8:21 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers at the Joint BioEnergy Institute (JBEI) have unveiled the first glycosyltransferase clone collection specifically targeted for the study of the biosynthesis of plant cell walls. The idea behind “the JBEI GT Collection” is to provide a functional genomic resource for researchers seeking to extract the sugars in plant biomass and synthesize them into clean, green and renewable transportation fuels.

Advertisement

Dynamic spectroscopy duo

June 17, 2014 1:34 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

From allowing our eyes to see, to enabling green plants to harvest energy from the sun, photochemical reactions are ubiquitous and critical to nature. Photochemical reactions also play essential roles in high technology. Using photochemical reactions to our best advantage requires a deep understanding of the interplay between the electrons and atomic nuclei within a molecular system after that system has been excited by light.

Precision physics of antiatoms

June 16, 2014 7:58 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Hydrogen is a neutral atom. Its single electron orbits a single proton, and the net effect is no electrical charge. But what about hydrogen’s antimatter counterpart, antihydrogen? Made of a positron that orbits an antiproton, the antihydrogen atom should be neutral too. Various results have indicated as much, but because the charge of antiatoms is difficult to measure, it has remained an open question.

Manipulating and detecting ultra-high-frequency sound waves

June 12, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An advance has been achieved towards next-generation ultrasonic imaging with potentially 1,000 times higher resolution than today’s medical ultrasounds. Researchers with Lawrence Berkeley National Laboratory have demonstrated a technique for producing, detecting and controlling ultra-high-frequency sound waves at the nanometer scale.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Researchers create nanoparticle thin films that self-assemble in one minute

June 10, 2014 7:51 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with Lawrence Berkeley National Laboratory have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Advertisement

Evolution of a bimetallic nanocatalyst

June 9, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multinational laboratory collaboration has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

New clues to why older women are more vulnerable to breast cancer

June 6, 2014 10:56 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists from Lawrence Berkeley National Laboratory have gained more insights into why older women are more susceptible to breast cancer. They found that as women age, the cells responsible for maintaining healthy breast tissue stop responding to their immediate surroundings, including mechanical cues that should prompt them to suppress nearby tumors.

Surprisingly strong magnetic fields challenge black holes’ pull

June 5, 2014 8:13 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

A new study of supermassive black holes at the centers of galaxies has found magnetic fields play an impressive role in the systems’ dynamics. In fact, in dozens of black holes surveyed, the magnetic field strength matched the force produced by the black holes’ powerful gravitational pull, says a team of scientists.

Berkeley Lab scientists create first fully 2-D field effect transistors

June 4, 2014 3:03 pm | News | Comments

Faster electronic device architectures are in the offing with the unveiling of the world’s first fully 2-D field-effect transistor (FET) by researchers at Lawrence Berkeley National Laboratory. Unlike conventional FETs made from silicon, these 2-D FETs suffer no performance drop-off under high voltages and provide high electron mobility, even when scaled to a monolayer in thickness.

Scientists find stronger 3-D material that behaves like graphene

June 3, 2014 8:17 am | by Glennda Chui, SLAC National Accelerator Laboratory | News | Comments

Scientists have discovered a material that has the same extraordinary electronic properties as 2-D graphene, but in a sturdy 3-D form that should be much easier to shape into electronic devices such as very fast transistors, sensors and transparent electrodes. The material, cadmium arsenide, is being explored independently by three groups.

Unexpected water explains surface chemistry of nanocrystals

May 30, 2014 8:35 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

A team at Lawrence Berkeley National Laboratory found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how they achieve an overall balance of positive and negative ions.

A path toward more powerful tabletop accelerators

May 29, 2014 7:39 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Making a tabletop particle accelerator just got easier. A new study shows that certain requirements for the lasers used in an emerging type of small-area particle accelerator can be significantly relaxed. Researchers hope the finding could bring about a new era of accelerators that would need just a few meters to bring particles to great speeds, rather than the many kilometers required of traditional accelerators.

Smaller accelerators for particle physics?

May 27, 2014 12:14 pm | News | Comments

It took every inch of the Large Hadron Collider's 17-mile length to accelerate particles to energies high enough to discover the Higgs boson. New laser-plasma accelerators, which use lasers instead of high-power radio-frequency waves to energize electrons in very short distances, could do the same thing in a football field length or less. A new theoretical study predicts that this approach may be easier than previously thought.

How the anticancer drug Taxol works

May 23, 2014 8:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A pathway to the design of even more effective versions of the powerful anticancer drug Taxol has been opened with the most detailed look ever at the assembly and disassembly of microtubules, tiny fibers of tubulin protein that form the cytoskeletons of living cells and play a crucial role in mitosis.

How beach microbes responded to the Deepwater Horizon oil spill

May 20, 2014 8:03 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

In June, 2010, two months after the Deepwater Horizon oil spill, Regina Lamendella collected samples along a hard-hit beach near Grand Isle, Louisiana. She was part of a team of Lawrence Berkeley National Laboratory researchers that wanted to know how the microbes along the shoreline were responding to the spill.

Lighting the way to graphene-based devices

May 16, 2014 1:45 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Graphene continues to reign as the next potential superstar material for the electronics industry, a slimmer, stronger and much faster electron conductor than silicon. With no natural energy bandgap, however, graphene’s superfast conductance can’t be switched off, a serious drawback for transistors and other electronic devices.

Researchers discover rare form of iron oxide in ancient pottery

May 15, 2014 7:52 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

New analysis of ancient Jian wares reveals the distinctive pottery contains an unexpected and highly unusual form of iron oxide. This rare compound, called epsilon-phase iron oxide, was only recently discovered and characterized by scientists and so far has been extremely difficult to create with modern techniques.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading