Advertisement
Lawrence Orlando Berkeley National Laboratory (DOE)
Subscribe to Lawrence Orlando Berkeley National Laboratory (DOE)

The Lead

Switching to spintronics

December 17, 2014 3:18 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In a development that holds promise for future magnetic memory and logic devices, researchers have successfully used an electric field to reverse the magnetization direction in a multiferroic spintronic device at room temperature. This demonstration, which runs counter to conventional scientific wisdom, points a new way towards spintronics and smaller, faster and cheaper ways of storing and processing data.

Local market conditions, policies strongly influence solar PV pricing

December 15, 2014 2:03 pm | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Differences in local market conditions and policies, and other factors, particularly the size of...

World record for compact particle accelerator

December 9, 2014 12:01 pm | by Kate Greene, Berkeley Lab | News | Comments

Using one of the most powerful lasers in the...

A better look at the chemistry of interfaces

December 2, 2014 4:41 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers have combined key features of two highly acclaimed x-ray spectroscopy techniques...

View Sample

FREE Email Newsletter

Sweet smell of success

December 2, 2014 8:37 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Two years ago, researchers at the Joint BioEnergy Institute engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel. Now, after further genetic modifications, they have managed to dramatically boost the E.coli’s methyl ketone production 160-fold.

Copper on the brain at rest

December 1, 2014 8:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In recent years it has been established that copper plays an essential role in the health of the human brain. Improper copper oxidation has been linked to several neurological disorders. Copper has also been identified as a critical ingredient in the enzymes that activate the brain’s neurotransmitters in response to stimuli. Now, a new study has shown that proper copper levels are also essential to the health of the brain at rest.

For important tumor-suppressing protein, context is key

November 24, 2014 8:19 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists from Lawrence Berkeley National Laboratory have learned new details about how an important tumor-suppressing protein, called p53, binds to the human genome. As with many things in life, they found that context makes a big difference. The researchers mapped the places where p53 binds to the genome in a human cancer cell line.

Advertisement

Research quantifies health benefits of reducing greenhouse gas emissions

November 19, 2014 8:31 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Reducing greenhouse gas (GHG) emissions, which result from the burning of fossil fuels, also reduces the incidence of health problems from particulate matter (PM) in these emissions. A team of scientists has calculated that the economic benefit of reduced health impacts from GHG reduction strategies in the U.S. range between $6 and $14 billion annually in 2020, depending on how the reductions are accomplished.

As temperatures rise, soil will relinquish less carbon to atmosphere

November 18, 2014 8:26 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Here’s another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from Lawrence Berkeley National Laboratory. The findings are from a new computer model that explores the feedbacks between soil carbon and climate change.

Lightning expected to increase by 50% with global warming

November 13, 2014 4:56 pm | by Robert Sanders, Univ. of California, Berkeley Media Relations | Videos | Comments

Today’s climate models predict a 50% increase in lightning strikes across the U.S. during this century as a result of warming temperatures associated with climate change. Reporting in Science, a team of climate scientists look at predictions of precipitation and cloud buoyancy in 11 different climate models and conclude that their combined effect will generate more frequent electrical discharges to the ground.

Supercomputers enable climate science to enter a new golden age

November 13, 2014 7:59 am | by Julie Chao, Lawrence Berkeley National Laboratory | Videos | Comments

Not long ago, it would have taken several years to run a high-resolution simulation on a global climate model. But using some of the most powerful supercomputers now available, Lawrence Berkeley National Laboratory climate scientist Michael Wehner was able to complete a run in just three months. Not only were the simulations much closer to actual observations, but the high-resolution models were far better at reproducing intense storms.

Synthetic biology for space exploration

November 10, 2014 9:27 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Does synthetic biology hold the key to manned space exploration of the moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels. In the future, synthetic biology could also be used to make manned space missions more practical.

Advertisement

How human cells become immortal

November 10, 2014 8:35 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Every day, some of your cells stop dividing, and that’s a good thing. Cells that proliferate indefinitely are immortal, an essential early step in the development of most malignant tumors. Despite its importance in cancer, the process of cell immortalization is poorly understood. That’s because scientists have lacked a good way to study immortalization in human cells as it occurs during cancer progression.

Synthetic biology for space exploration

November 6, 2014 3:13 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Does synthetic biology hold the key to manned space exploration of the Moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug.

Golden approach to high-speed DNA reading

November 6, 2014 9:54 am | by Lynn Yarris, Berkeley Lab | News | Comments

Researchers with Berkeley Lab and the Univ. of California (UC) Berkeley have invented a simple, one-step process for producing nanopores in a graphene membrane using the photothermal properties of gold nanorods.            

Thirdhand smoke: Toxic airborne pollutants linger long after the smoke clears

November 4, 2014 2:47 pm | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Ever walked into a hotel room and smelled old cigarette smoke? While the last smoker may have left the room hours or even days ago, the lingering odors are thanks to thirdhand smoke. Scientists at Lawrence Berkeley National Laboratory, who have made important findings on the dangers of thirdhand smoke and how it adsorbs strongly onto indoor surfaces, have published a new study assessing the health effects of thirdhand smoke constituents.

Scientists identify new driver behind Arctic warming

November 4, 2014 8:45 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists have identified a mechanism that could be a big contributor to warming in the Arctic region and melting sea ice. The research was led by scientists from Lawrence Berkeley National Laboratory. They studied a long-wavelength region of the electromagnetic spectrum called far infrared. It’s invisible to our eyes but accounts for about half the energy emitted by the Earth’s surface. This process balances out incoming solar energy.

Advertisement

Outsmarting thermodynamics in self-assembly of nanostructures

November 3, 2014 1:56 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

If you can uniformly break the symmetry of nanorod pairs in a colloidal solution, you’re a step ahead of the game toward achieving new and exciting metamaterial properties. But traditional thermodynamic-driven colloidal assembly of these metamaterials, which are materials defined by their non-naturally-occurring properties, often result in structures with high degree of symmetries in the bulk material.

Lord of the microrings

October 31, 2014 8:39 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A significant breakthrough in laser technology has been reported by Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley. The team of scientists have developed a unique microring laser cavity that can produce single-mode lasing even from a conventional multi-mode laser cavity.

Afingen uses precision method to enhance plants

October 30, 2014 8:17 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Imagine being able to precisely control specific tissues of a plant to enhance desired traits without affecting the plant’s overall function. Thus a rubber tree could be manipulated to produce more natural latex. Trees grown for wood could be made with higher lignin content, making for stronger yet lighter-weight lumber.

Boosting biogasoline production in microbes

October 28, 2014 8:53 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the on-going effort to develop advanced biofuels as a clean, green and sustainable source of liquid transportation fuels, researchers at the U.S. Dept. of Energy’s Joint BioEnergy Institute have identified microbial genes that can improve both the tolerance and the production of biogasoline in engineered strains of Escherichia coli.

Study reveals molecular structure of water at gold electrodes

October 24, 2014 8:19 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

When a solid material is immersed in a liquid, the liquid immediately next to its surface differs from that of the bulk liquid at the molecular level. This interfacial layer is critical to our understanding of a diverse set of phenomena. When the solid surface is charged, it can drive further changes in the interfacial liquid. However, elucidating the molecular structure at the solid-liquid interface under these conditions is difficult.

New insights on carbonic acid in water

October 23, 2014 8:42 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Though it garners few headlines, carbonic acid, the hydrated form of carbon dioxide, is critical to both the health of the atmosphere and the human body. However, because it exists for only a fraction of a second before changing into a mix of hydrogen and bicarbonate ions, carbonic acid has remained an enigma. A new study has yielded new information about carbonic acid with important implications for geological and biological concerns.

A 3-D map of the adolescent universe

October 20, 2014 8:18 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Using extremely faint light from galaxies 10.8-billion light-years away, scientists have created one of the most complete, 3-D maps of a slice of the adolescent universe. The map shows a web of hydrogen gas that varies from low to high density at a time when the universe was made of a fraction of the dark matter we see today.

Dispelling a misconception about Mg-ion batteries

October 17, 2014 8:01 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lithium-ion batteries are popular, but have limitations in energy density, lifetime and safety. One alternative is Mg-ion batteries. Researchers at Lawrence Berkeley National Laboratory ran a series of computer simulations that suggest that performance bottlenecks experienced with Mg-ion batteries to date may not be so much related to the electrolyte itself, but to what happens at the interface between the electrolyte and electrodes.

ALS progression linked to increased protein instability

October 14, 2014 8:14 am | by Jon Weiner, Lawrence Berkeley National Laboratory | News | Comments

A new study by scientists from The Scripps Research Institute, Lawrence Berkeley National Laboratory and other institutions suggests a cause of amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease. The team's work supports a common theme whereby loss of protein stability leads to disease.

A quick look at electron-boson coupling

October 7, 2014 8:56 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine being able to tune the properties of a solid material just by flashing pulses of light on it. That is one potential payoff of electrons and atoms interacting with ultrashort pulses of light. The technology of ultrafast spectroscopy is a key to understanding this phenomenon and now a new wrinkle to that technology, observations of electron self-energy, has been introduced by Lawrence Berkeley National Laboratory researchers.

A closer look at the perfect fluid

October 3, 2014 9:30 am | by Kate Greene, Berkeley Lab | News | Comments

By combining data from two high-energy accelerators, nuclear scientists from Lawrence Berkeley National Laboratory and colleagues have refined the measurement of a remarkable property of exotic matter known as quark-gluon plasma. The findings reveal new aspects of the ultra-hot, “perfect fluid” that give clues to the state of the young universe just microseconds after the big bang.

Automated sorting through metagenomes

September 30, 2014 8:05 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Microbes have an amazing ability to feed on plant biomass and convert it into other chemical products. Tapping into this talent has the potential to revolutionize energy, medicine, environmental remediation and many other fields. The success of this effort hinges in part on metagenomics, the emerging technology that enables researchers to read all the individual genomes of a sample microbial community at once.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading