Advertisement
Lawrence Orlando Berkeley National Laboratory (DOE)
Subscribe to Lawrence Orlando Berkeley National Laboratory (DOE)

The Lead

Carbon dioxide’s increasing greenhouse effect at Earth’s surface

February 26, 2015 8:12 am | by Dan Krotz, Lawrence Berkeley National Laboratory | Videos | Comments

Scientists have observed an increase in carbon dioxide’s greenhouse effect at the Earth’s surface for the first time. The researchers, led by scientists from Lawrence Berkeley National Laboratory, measured atmospheric carbon dioxide’s increasing capacity to absorb thermal radiation emitted from the Earth’s surface over an eleven-year period at two locations in North America.

What to expect next from the world’s largest particle accelerator

February 23, 2015 7:56 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

In March, when researchers flip the switch to the world’s largest, most powerful particle...

Researchers develop algorithm to make simulation of ultra-fast processes possible

February 17, 2015 7:17 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

When electronic states in materials are excited during dynamic processes, interesting phenomena...

Bacterial armor holds clues for self-assembling nanostructures

February 13, 2015 8:35 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine thousands of copies of a single protein organizing into a coat of chainmail armor that...

View Sample

FREE Email Newsletter

Battery startup promises safe lithium batteries

February 10, 2015 9:53 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Lawrence Berkeley National Laboratory battery scientist Nitash Balsara has worked for many years trying to find a way to improve the safety of lithium-ion batteries. Now he believes he has found the answer in a most unlikely material: a class of compounds that has mainly been used for industrial lubrication.

New design tool for metamaterials

February 10, 2015 8:33 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Metamaterials offer tantalizing future prospects such as high-resolution optical microscopes and superfast optical computers. To realize the vast potential of metamaterials, however, scientists will need to hone their understanding of the fundamental physics behind them. This will require accurately predicting nonlinear optical properties.

How oxygen is kryptonite to titanium

February 6, 2015 11:00 am | by Sarah Yang, Media Relations, UC Berkeley | Videos | Comments

Univ. of California, Berkeley scientists have found the mechanism by which titanium, prized for its high strength-to-weight ratio and natural resistance to corrosion, becomes brittle with just a few extra atoms of oxygen. The discovery has the potential to open the door to more practical, cost-effective uses of titanium in a broader range of applications.

Advertisement

Precision growth of light-emitting nanowires

February 6, 2015 9:12 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

A novel approach to growing nanowires promises a new means of control over their light-emitting and electronic properties. In a recent issue of Nano Letters, scientists from Lawrence Berkeley National Lab demonstrated a new growth technique that uses specially engineered catalysts. These catalysts, which are precursors to growing the nanowires, have given scientists more options than ever in turning the color of light-emitting nanowires.

Rediscovering spontaneous light emission

February 4, 2015 8:06 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Lawrence Berkeley National Laboratory researchers have developed a nano-sized optical antenna that can greatly enhance the spontaneous emission of light from atoms, molecules and semiconductor quantum dots. This advance opens the door to light-emitting diodes (LEDs) that can replace lasers for short-range optical communications, including optical interconnects for microchips, plus a host of other potential applications.

New pathway to valleytronics

January 28, 2015 8:43 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is “valleytronics,” in which information is coded based on the wavelike motion of electrons moving through certain 2-D semiconductors. Now, a promising new pathway to valleytronic technology has been uncovered by researchers with the Lawrence Berkeley National Laboratory.

Solving an organic semiconductor mystery

January 16, 2015 12:07 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Organic semiconductors are prized for light-emitting diodes, field effect transistors and photovoltaic cells. As they can be printed from solution, they provide a highly scalable, cost-effective alternative to silicon-based devices. Uneven performances, however, have been a persistent problem.

Berkley Lab illuminates price premiums for U.S. solar home sales

January 14, 2015 8:14 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

A multi-institutional research team of scientists led by Lawrence Berkley National Laboratory, in partnership with Sandia National Laboratories, universities and appraisers, found that home buyers consistently have been willing to pay more for homes with host-owned solar photovoltaic (PV) energy systems—averaging about $4/W of PV installed—across various states, housing and PV markets and home types.

Advertisement

Manipulating nanoribbons at the molecular level

January 12, 2015 12:44 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Narrow strips of graphene called nanoribbons exhibit extraordinary properties that make them important candidates for future nanoelectronic technologies. A barrier to exploiting them, however, is the difficulty of controlling their shape at the atomic scale, a prerequisite for many possible applications.

Quantum dots have made quantum leaps

January 9, 2015 8:57 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Outside his career as a noted nanochemist, Lawrence Berkeley National Laboratory (Berkeley Lab) director Paul Alivisatos is an avid photographer. To show off his photos, his preferred device is a Kindle Fire HDX tablet because “the color display is a whole lot better than other tablets,” he says.

Possible avenue to better electrolyte for lithium ion batteries

December 22, 2014 10:04 am | News | Comments

The lithium-ion batteries that mobilize our electronic devices need to be improved if they are to power electric vehicles or store electrical energy for the grid. Berkeley Lab researchers looking for a better understanding of liquid electrolyte may have found a pathway forward.

Switching to spintronics

December 17, 2014 3:18 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In a development that holds promise for future magnetic memory and logic devices, researchers have successfully used an electric field to reverse the magnetization direction in a multiferroic spintronic device at room temperature. This demonstration, which runs counter to conventional scientific wisdom, points a new way towards spintronics and smaller, faster and cheaper ways of storing and processing data.

Local market conditions, policies strongly influence solar PV pricing

December 15, 2014 2:03 pm | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Differences in local market conditions and policies, and other factors, particularly the size of the system, can lead to wide disparities in what consumers across the U.S. pay to install solar energy systems on their homes or small businesses, according to a recent study published by Lawrence Berkeley National Laboratory. This translates into thousands of dollars difference in the price of comparable solar energy systems around the U.S.

Advertisement

World record for compact particle accelerator

December 9, 2014 12:01 pm | by Kate Greene, Berkeley Lab | News | Comments

Using one of the most powerful lasers in the world, researchers have accelerated subatomic particles to the highest energies ever recorded from a compact accelerator.                        

A better look at the chemistry of interfaces

December 2, 2014 4:41 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Researchers have combined key features of two highly acclaimed x-ray spectroscopy techniques into a new technique that offers sub-nanometer resolution of every chemical element to be found at heterogeneous interfaces, such as those in batteries and fuel cells. This new technique is called SWAPPS for Standing Wave Ambient Pressure Photoelectron Spectroscopy.

Sweet smell of success

December 2, 2014 8:37 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Two years ago, researchers at the Joint BioEnergy Institute engineered E. coli bacteria to convert glucose into significant quantities of methyl ketones, a class of chemical compounds primarily used for fragrances and flavors, but highly promising as clean, green and renewable blending agents for diesel fuel. Now, after further genetic modifications, they have managed to dramatically boost the E.coli’s methyl ketone production 160-fold.

Copper on the brain at rest

December 1, 2014 8:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In recent years it has been established that copper plays an essential role in the health of the human brain. Improper copper oxidation has been linked to several neurological disorders. Copper has also been identified as a critical ingredient in the enzymes that activate the brain’s neurotransmitters in response to stimuli. Now, a new study has shown that proper copper levels are also essential to the health of the brain at rest.

For important tumor-suppressing protein, context is key

November 24, 2014 8:19 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Scientists from Lawrence Berkeley National Laboratory have learned new details about how an important tumor-suppressing protein, called p53, binds to the human genome. As with many things in life, they found that context makes a big difference. The researchers mapped the places where p53 binds to the genome in a human cancer cell line.

Research quantifies health benefits of reducing greenhouse gas emissions

November 19, 2014 8:31 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Reducing greenhouse gas (GHG) emissions, which result from the burning of fossil fuels, also reduces the incidence of health problems from particulate matter (PM) in these emissions. A team of scientists has calculated that the economic benefit of reduced health impacts from GHG reduction strategies in the U.S. range between $6 and $14 billion annually in 2020, depending on how the reductions are accomplished.

As temperatures rise, soil will relinquish less carbon to atmosphere

November 18, 2014 8:26 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Here’s another reason to pay close attention to microbes: Current climate models probably overestimate the amount of carbon that will be released from soil into the atmosphere as global temperatures rise, according to research from Lawrence Berkeley National Laboratory. The findings are from a new computer model that explores the feedbacks between soil carbon and climate change.

Lightning expected to increase by 50% with global warming

November 13, 2014 4:56 pm | by Robert Sanders, Univ. of California, Berkeley Media Relations | Videos | Comments

Today’s climate models predict a 50% increase in lightning strikes across the U.S. during this century as a result of warming temperatures associated with climate change. Reporting in Science, a team of climate scientists look at predictions of precipitation and cloud buoyancy in 11 different climate models and conclude that their combined effect will generate more frequent electrical discharges to the ground.

Supercomputers enable climate science to enter a new golden age

November 13, 2014 7:59 am | by Julie Chao, Lawrence Berkeley National Laboratory | Videos | Comments

Not long ago, it would have taken several years to run a high-resolution simulation on a global climate model. But using some of the most powerful supercomputers now available, Lawrence Berkeley National Laboratory climate scientist Michael Wehner was able to complete a run in just three months. Not only were the simulations much closer to actual observations, but the high-resolution models were far better at reproducing intense storms.

Synthetic biology for space exploration

November 10, 2014 9:27 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Does synthetic biology hold the key to manned space exploration of the moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels. In the future, synthetic biology could also be used to make manned space missions more practical.

How human cells become immortal

November 10, 2014 8:35 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Every day, some of your cells stop dividing, and that’s a good thing. Cells that proliferate indefinitely are immortal, an essential early step in the development of most malignant tumors. Despite its importance in cancer, the process of cell immortalization is poorly understood. That’s because scientists have lacked a good way to study immortalization in human cells as it occurs during cancer progression.

Synthetic biology for space exploration

November 6, 2014 3:13 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Does synthetic biology hold the key to manned space exploration of the Moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading