Brookhaven National Laboratory (DOE)
Subscribe to Brookhaven National Laboratory (DOE)
View Sample

FREE Email Newsletter

Approaching the border between primordial plasma and ordinary matter

August 15, 2012 3:51 am | News | Comments

A new energy scan study at Brookhaven National Laboratory’s Relativistic Heavy Ion Collider has revealed the first hints of a possible boundary separating ordinary nuclear matter, composed of protons and neutrons, from the seething soup of their constituent quarks and gluons that permeated the universe 14 billion years ago.

Unraveling intricate interactions, one molecule at a time

August 13, 2012 4:37 am | News | Comments

A team of researchers at Columbia Engineering, in collaboration with Brookhaven National Laboratory, has succeeded in performing the first quantitative characterization of van der Waals interactions at metal/organic interfaces at the single-molecule level.

Titan supercomputer hours awarded to collaborative protein project

July 16, 2012 11:01 am | News | Comments

Scientists at Brookhaven National Laboratory and Stony Brook University have been awarded processing time on a new supercomputer at Oak Ridge National Laboratory to study how proteins fold into their 3D shapes.


Picometer-precision imaging of electrical fields reveals mysteries of ferroelectrics

July 9, 2012 6:32 am | News | Comments

Brookhaven National Laboratory scientists recently used a technique called electron holography to capture images of the electric fields created by atomic displacement in exotic ferroelectric materials. The technique can resolve to the picometer scale, allowing them to observe unprecedented details about the atomic structure and behavior of these materials.

Subatomic details of exotic ferroelectric nanomaterials

July 9, 2012 4:42 am | News | Comments

As scientists learn to manipulate little-understood nanoscale materials, they are laying the foundation for a future of more compact and efficient devices. In new research, scientists at Brookhaven and Lawrence Berkeley national laboratories and other collaborating institutions describe one such advance—a technique, called electron holography, revealing unprecedented details about the atomic structure and behavior of exotic ferroelectric materials. The research could guide the scaling up of these materials.

Brewing the world's hottest Guinness

June 25, 2012 6:49 am | News | Comments

Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) smashes particles together to recreate the incredible conditions that only existed at the dawn of time. The 2.4-mile underground atomic "racetrack" at RHIC produces fundamental insights about the laws underlying all visible matter. But along the way, its particles also smashed a world record.

$27 million award bolsters research computing grid

June 21, 2012 9:33 am | News | Comments

The U.S. Department of Energy Office of Science and the National Science Foundation have committed up to $27 million to Open Science Grid, a nine-member partnership extending the reach of distributed high-throughput computing networks.

Taking hybrids for a spin to generate electricity from sunlight

June 12, 2012 11:51 am | News | Comments

Even at the nanoscale, hybrids show promise—as evidenced by new efforts to pair inorganic nanoparticles with conductive polymers to convert sunlight into electricity or build better biosensors. To make the most of these molecular matchups, however, scientists need to understand the small-scale details of charge transfer—and how to control it.


World's best measurement of key property of neutrinos

June 5, 2012 12:31 pm | News | Comments

Scientists from the MINOS experiment at the Fermi National Accelerator Laboratory have revealed the world's most precise measurement of a key parameter that governs the transformation of one type of neutrino to another. The results confirm that neutrinos and their antimatter counterparts, antineutrinos, have similar masses as predicted by most commonly accepted theories that explain how the subatomic world works.

Scientists identify mechanism for regulating plant oil production

June 5, 2012 5:00 am | News | Comments

Scientists at the Brookhaven National Laboratory have identified key elements in the biochemical mechanism plants use to limit the production of fatty acids. The results suggest ways scientists might target those biochemical pathways to increase the production of plant oils as a renewable resource for biofuels and industrial processes.

Internal atomic structure reveals key to pollution-fighting bacteria

May 16, 2012 11:54 am | News | Comments

Some remarkable types of bacteria have proven themselves capable of "consuming" toxic pollutants, organically diminishing environmental impact in a process called bioremediation. Enzymes within these bacteria can effectively alter the molecular structure of dangerous chemicals, but the underlying mechanisms and keys to future advances often remain unknown. Now, scientists Brookhaven National Laboratory have revealed a possible explanation for the superior function of one pollution-degrading enzyme.

A new world of spintronics with topological insulators

May 15, 2012 4:20 am | News | Comments

Lawrence Berkeley National Laboratory theorists and experimenters have led in the exploration of the unique properties of topological insulators, where electrons may flow on the surface without resistance and with their spin orientations and directions intimately related. Recent research at beamline 12.0.1 of the Advanced Light Source opens the way to exciting prospects for practical new spintronic devices that exploit control of electron spin as well as charge.

Topological insulator shows promise for new class of room-temperature electronics

May 8, 2012 5:43 am | News | Comments

In the search for new materials with improved electrical conductivity, scientists at Brookhaven National Laboratory have found what appears to be a promising candidate. New experiments show that electrons on the surface of this so-called topological insulator are "protected" from two kinds of scattering that can potentially interfere with the flow of electric current, even at relatively "warm" room temperatures, where the flow of electricity was expected to break down.


More precise look at cradle-to-grave greenhouse gas emissions for energy technology

May 7, 2012 10:19 am | News | Comments

A new approach to assessing greenhouse gas emissions from coal, wind, solar, and other energy technologies paints a much more precise picture of cradle-to-grave emissions and should help sharpen decisions on what new energy projects to build.

New technique uses electrons to map nanoparticle atomic structures

May 4, 2012 9:12 am | News | Comments

A team of scientists has been working to develop nanocrystallography techniques that can be used in ordinary science settings. They have shown how a powerful method called atomic pair distribution function (PDF) analysis can be carried out using a transmission electron microscope.

Atomic-scale visualization of electron pairing in iron superconductors

May 4, 2012 4:05 am | News | Comments

By measuring how strongly electrons are bound together to form Cooper pairs in an iron-based superconductor, scientists provide direct evidence supporting theories in which magnetism holds the key to this material’s ability to carry current with no resistance. This research strengthens confidence that this type of theory may one day be used to identify or design new materials with improved properties.

New Light Source construction more than 70% complete

April 27, 2012 9:25 am | News | Comments

Construction of the $912-million National Synchrotron Light Source II (NSLS-II) at the Brookhaven National Laboratory is more than 70% complete—on schedule and on budget. When operational in 2015, NSLS-II will enable unprecedented studies aimed at designing new materials for efficient energy generation and storage, building better catalysts, and engineering new kinds of electronics and medicines.

Scientists discover bilayer structure in efficient solar material

April 24, 2012 9:17 am | News | Comments

Detailed studies of one of the best-performing organic photovoltaic materials reveal an unusual bilayer lamellar structure that may help explain the material’s superior performance at converting sunlight to electricity and guide the synthesis of new materials with even better properties.

Supercomputing the difference between matter and antimatter

March 29, 2012 5:26 am | News | Comments

An international collaboration of scientists has reported a landmark calculation of the decay process of a kaon into two pions, using breakthrough techniques on some of the fastest supercomputers. This is the same subatomic particle decay explored in a 1964 Nobel Prize-winning experiment performed at Brookhaven National Laboratory, which revealed the first experimental evidence of charge-parity violation.

Brookhaven to introduce new supercomputers to advance nanomaterial design

March 22, 2012 9:35 am | News | Comments

This spring a new supercomputer will come online at Brookhaven National Laboratory, arming its scientists and engineers with a tool to advance their research. Brookhaven's Center for Functional Nanomaterials and the Chemistry Department will use this big boost in computing power, called Blue Gene/Q, to tease out new ways to put nanoscale materials to work.

New catalyst for safe, reversible hydrogen storage

March 19, 2012 5:21 am | News | Comments

Scientists at Brookhaven National Laboratory and collaborators have developed a new catalyst that reversibly converts hydrogen gas and carbon dioxide to a liquid under very mild conditions. The work could lead to efficient ways to safely store and transport hydrogen for use as an alternative fuel.

Liquid-like copper ion material aids conversion of heat to electricity

March 13, 2012 4:32 am | News | Comments

Scientists from the Chinese Academy of Science's Shanghai Institute of Ceramics, in collaboration with scientists from Brookhaven National Laboratory, the University of Michigan, and the California Institute of Technology, have identified a new class of high-performance thermoelectric materials. In their study, liquid-like copper ions carry electric current around a solid selenium crystal lattice.

Eight national labs streamline partnership agreements

February 27, 2012 5:43 pm | News | Comments

Intended to help cut red tape for business and startups wanting to do business with the U.S. Dept. of Energy’s research laboratories, the new Agreements for Commercializing Technology (ACT) program was recently launched as a third alternative to the two preceding options: signing a Cooperative Research and Development Agreement (CRADA) or a Work For Others (WFO) Agreement.

Brookhaven Lab, BMI collaborate to build advanced cancer therapy accelerator

February 27, 2012 5:47 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

A new collaboration between Brookhaven National Laboratory and Best Medical International (BMI) aims to design one of the most dynamic and effective cancer therapy devices in the world. The ion Rapidly Cycling Medical Synchrotron (iRCMS) draws on the particle acceleration expertise of Brookhaven Laboratory physicists and the medical experience of BMI to advance cancer therapy, particularly the evolving use of carbon and other light ions.

Drinking alcohol shrinks critical brain regions in genetically vulnerable mice

February 16, 2012 9:29 am | News | Comments

Brain scans of two strains of mice imbibing significant quantities of alcohol reveal serious shrinkage in some brain regions—but only in mice lacking a particular type of receptor for dopamine, the brain's "reward" chemical. A study conducted at Brookhaven National Laboratory provides new evidence that these dopamine receptors, known as DRD2, may play a protective role against alcohol-induced brain damage.

You may login with either your assigned username or your e-mail address.
The password field is case sensitive.