Advertisement
Brookhaven National Laboratory (DOE)
Subscribe to Brookhaven National Laboratory (DOE)
View Sample

FREE Email Newsletter

Label-free, sequence-specific, inexpensive fluorescent DNA sensors

April 28, 2014 8:03 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Using principles of energy transfer more commonly applied to designing solar cells, scientists at Brookhaven National Laboratory have developed a new highly sensitive way to detect specific sequences of DNA, the genetic material unique to every living thing. The method is considerably less costly than other DNA assays and has widespread potential for applications in forensics, medical diagnostics and the detection of bioterror agents.

“Exotic” material is like a switch when super thin

April 18, 2014 3:05 pm | by Anne Ju, Cornell Univ. | News | Comments

Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides. Researchers from Cornell Univ. and Brookhaven National Laboratory have shown how to switch a particular transition metal oxide, a lanthanum nickelate (LaNiO3), from a metal to an insulator by making the material less than a nanometer thick.

Scientists capture ultrafast snapshots of light-driven superconductivity

April 16, 2014 2:34 pm | News | Comments

Carefully timed pairs of laser pulses at the Linac Coherent Light Source have been used to trigger superconductivity in a promising copper-oxide material and immediately take x-ray snapshots of its atomic and electronic structure as superconductivity emerged. The results of this effort have pinned down a major factor behind the appearance of superconductivity, and it hinges around “stripes” of increase electrical charge.

Advertisement

Scientists track 3-D nanoscale changes in rechargeable battery material during operation

March 26, 2014 8:03 am | News | Comments

Scientists at Brookhaven National Laboratory have made the first 3-D observations of how the structure of a lithium-ion battery anode evolves at the nanoscale in a real battery cell as it discharges and recharges. The details of this research, described in a paper published in Angewandte Chemie, could point to new ways to engineer battery materials to increase the capacity and lifetime of rechargeable batteries.

Using viruses as nanoscale building blocks

February 21, 2014 11:28 am | by Mona S. Rowe, Brookhaven National Laboratory | News | Comments

From steel beams to plastic Lego bricks, building blocks come in many materials and all sizes. Today, science has opened the way to manufacturing at the nanoscale with biological materials. Potential applications range from medicine to optoelectronic devices. In a paper published in Soft Matter, scientists announced their discovery of a 2-D crystalline structure assembled from the outer shells of a virus.

Roots to shoots: Hormone transport in plants deciphered

February 11, 2014 8:32 am | News | Comments

Plant growth is orchestrated by a spectrum of signals from hormones within a plant. A major group of plant hormones called cytokinins originate in the roots of plants, and their journey to growth areas on the stem and in leaves stimulates plant development. Though these phytohormones have been identified in the past, the molecular mechanism responsible for their transportation within plants was previously poorly understood. Until now.

Disordered materials hold promise for better batteries

January 10, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

Lithium batteries, with their exceptional ability to store power per a given weight, have been a major focus of research to enable use in everything from portable electronics to electric cars. Now researchers at Massachusetts Institute of Technology and Brookhaven National Laboratory have found a whole new avenue for such research: the use of disordered materials, which had generally been considered unsuitable for batteries.

The play-by-play of energy conversion

January 9, 2014 9:53 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory report that, for the first time, a comprehensive set of tools is available for exploring correlations among the morphological, structural, electronic and chemical properties of catalytic materials under working conditions. Two recent studies have used microscopy and spectroscopy to catch custom-built catalysts in action.

Advertisement

Scientists reduce protein crystal damage, improve pharmaceutical development

December 18, 2013 1:47 pm | News | Comments

New recommendations for using x-rays promise to speed investigations aimed at understanding the structure of biologically important proteins. In their study, the scientists evaluated options to remedy problems affecting data collection. Scientists who use x-ray beams to study protein crystals face a dilemma: The beams provide the best tool for understanding a protein's structure and biological function, but they often damage the crystal.

Small size enhances charge transfer in quantum dots

December 18, 2013 9:09 am | News | Comments

Quantum dots have potential for applications that make use of their ability to absorb or emit light and/or electric charges. Examples include more vividly colored light-emitting diodes (LEDs), photovoltaic solar cells, nanoscale transistors and biosensors. But because these applications have differing, sometimes opposite, requirements, finding ways to control the dots’ optical and electronic properties is crucial to their success.

Pressure transforms a semiconductor into a new state of matter

December 11, 2013 7:40 am | News | Comments

By applying pressure to a semiconductor, researchers have been able to transform a semiconductor into a “topological insulator” (TI), an intriguing state of matter in which a material’s interior is insulating but its surfaces or edges are conducting with unique electrical properties. This is the first time that researchers have used pressure to gradually “tune” a material into the TI state.

Designing a better catalyst for solar-powered hydrogen production

December 3, 2013 12:58 pm | News | Comments

Hydrogen is a “green” fuel that burns cleanly and can generate electricity via fuel cells. One way to sustainably produce hydrogen is by splitting water molecules using the renewable power of sunlight, but scientists are still learning how to control and optimize this reaction with catalysts. At the National Synchrotron Light Source, a research group has determined key structural information about a potential catalyst.

Scientists collaborate to maximize energy gains from tiny nanoparticles

November 15, 2013 11:56 am | News | Comments

Sometimes big change comes from small beginnings. That’s especially true in the research of Anatoly Frenkel, a prof. of physics at Yeshiva Univ., who is working to reinvent the way we use and produce energy by unlocking the potential of some of the world’s tiniest structures: nanoparticles.

Advertisement

Field-effect transistors get a boost from ferroelectric films

October 23, 2013 7:42 am | News | Comments

As microelectronics get smaller and smaller, one of the biggest challenges to packing a smartphone or tablet with maximum processing power and memory is the amount of heat generated by the tiny “switches” at the heart of the device.  A complex metal-oxide film could help reduce the voltage required to switch electronic signals, and thus the excessive energy they require. 

Nanocone textures generate robust water-repellent surfaces

October 21, 2013 11:59 am | News | Comments

When it comes to designing extremely water-repellent surfaces, shape and size matter. That's the finding of a group of scientists at Brookhaven National Laboratory, who investigated the effects of differently shaped, nanoscale textures on a material's ability to force water droplets to roll off without wetting its surface.

Mixing nanoparticles to make multifunctional materials

October 21, 2013 7:37 am | News | Comments

Scientists at Brookhaven National Laboratory have developed a general approach for combining different types of nanoparticles to produce large-scale composite materials. The technique opens many opportunities for mixing and matching particles with different magnetic, optical or chemical properties to form new, multifunctional materials or materials with enhanced performance for a wide range of potential applications.

Scientists identify key genes for increasing oil content in plant leaves

October 18, 2013 9:41 am | News | Comments

Scientists at Brookhaven National Laboratory have identified the key genes required for oil production and accumulation in plant leaves and other vegetative plant tissues. Enhancing expression of these genes resulted in vastly increased oil content in leaves, the most abundant sources of plant biomass—a finding that could have important implications for increasing the energy content of plant-based foods and renewable biofuel feedstocks.

Supercomputers help solve a 50-year homework assignment

September 26, 2013 7:56 am | News | Comments

Kids grumble about homework. But their complaints will hold no water with a group of theoretical physicists who’ve spent almost 50 years solving one homework problem: a calculation of one type of subatomic particle decay aimed at helping to answer the question of why the early universe ended up with an excess of matter. Without that excess, the matter and antimatter created in the Big Bang would have completely annihilated one another.

Nanocrystal catalyst transforms impure hydrogen into electricity

September 18, 2013 2:20 pm | News | Comments

Carbon monoxide is a poisoning impurity in hydrogen derived from natural gas. If a catalyst could be developed that can handle this impure fuel, it could be a substantially less expensive alternative to pure hydrogen produced from water. Scientists at Brookhaven National Laboratory have used a simple, “green” process to create a new core-shell catalyst that tolerates carbon monoxide in fuel cells.

Supercomputing the transition from ordinary to extraordinary forms of matter

September 18, 2013 8:15 am | News | Comments

To get a better understanding of the subatomic soup that filled the early universe, and how it “froze out” to form the atoms of today’s world, scientists are taking a closer look at the nuclear phase diagram. Like a map that describes how the physical state of water morphs from solid ice to liquid to steam with changes in temperature and pressure, the nuclear phase diagram maps out different phases of the components of atomic nuclei.

Shedding new light on the “electron highways” of organic solar cells

September 3, 2013 9:07 am | News | Comments

Researchers at Brookhaven National Laboratory and Stony Brook Univ. have developed a way to map out the degree of "traffic congestion" on the electron highways within the photoactive layer of organic solar cells. Their new measurement and tracking technique uses optical-guided modes to help scientists better understand how the materials used in the photoactive layers influence the speed and efficiency of electron travel.

Tracking the disappearance of ghost-like neutrinos

August 22, 2013 7:42 am | News | Comments

The international Daya Bay Collaboration has announced new results about the transformations of neutrinos. The latest findings include the collaboration’s first data on how neutrino oscillation, in which neutrinos mix and change into other “flavors,” or types, as they travel, varies with neutrino energy, allowing the measurement of a key difference in neutrino masses known as mass splitting.

Interface superconductivity withstands variations in atomic configuration

August 6, 2013 8:54 am | News | Comments

Scientists at Brookhaven National Laboratory have discovered an unexpected and anomalous pattern in the behavior of one high-performing class of HTS materials. In the new frontier of interface physics, two non-conducting materials can be layered to produce HTS behavior, with tantalizing and mystifying results.

Scientists discover hidden magnetic waves in high-temperature superconductors

August 5, 2013 8:32 am | News | Comments

Scientists at Brookhaven National Laboratory and other collaborating institutions have discovered a surprising twist in the magnetic properties of high-temperature superconductors, challenging some of the leading theories. In a new study, scientists found that unexpected magnetic excitations—quantum waves believed by many to regulate HTS—exist in both non-superconducting and superconducting materials.

Mysterious giant magnet attracts rock-star status

July 29, 2013 9:21 am | by Jason Keyser and Scott Eisen, Associated Press | News | Comments

It skipped tolls. It had a Twitter hashtag and a GPS tracker. It even posed for photos with groupies. Yet the 15-ton shrink-wrapped cargo remained a mystery to most who saw it along the slow, delicate 3,200-mile journey from New York to suburban Chicago. Now that it has arrived at the Fermi National Accelerator Laboratory, the giant electromagnet will be unveiled to help study fast particles.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading