Advertisement
Brookhaven National Laboratory (DOE)
Subscribe to Brookhaven National Laboratory (DOE)
View Sample

FREE Email Newsletter

Nanocone textures generate robust water-repellent surfaces

October 21, 2013 11:59 am | News | Comments

When it comes to designing extremely water-repellent surfaces, shape and size matter. That's the finding of a group of scientists at Brookhaven National Laboratory, who investigated the effects of differently shaped, nanoscale textures on a material's ability to force water droplets to roll off without wetting its surface.

Mixing nanoparticles to make multifunctional materials

October 21, 2013 7:37 am | News | Comments

Scientists at Brookhaven National Laboratory have developed a general approach for combining different types of nanoparticles to produce large-scale composite materials. The technique opens many opportunities for mixing and matching particles with different magnetic, optical or chemical properties to form new, multifunctional materials or materials with enhanced performance for a wide range of potential applications.

Scientists identify key genes for increasing oil content in plant leaves

October 18, 2013 9:41 am | News | Comments

Scientists at Brookhaven National Laboratory have identified the key genes required for oil production and accumulation in plant leaves and other vegetative plant tissues. Enhancing expression of these genes resulted in vastly increased oil content in leaves, the most abundant sources of plant biomass—a finding that could have important implications for increasing the energy content of plant-based foods and renewable biofuel feedstocks.

Advertisement

Supercomputers help solve a 50-year homework assignment

September 26, 2013 7:56 am | News | Comments

Kids grumble about homework. But their complaints will hold no water with a group of theoretical physicists who’ve spent almost 50 years solving one homework problem: a calculation of one type of subatomic particle decay aimed at helping to answer the question of why the early universe ended up with an excess of matter. Without that excess, the matter and antimatter created in the Big Bang would have completely annihilated one another.

Nanocrystal catalyst transforms impure hydrogen into electricity

September 18, 2013 2:20 pm | News | Comments

Carbon monoxide is a poisoning impurity in hydrogen derived from natural gas. If a catalyst could be developed that can handle this impure fuel, it could be a substantially less expensive alternative to pure hydrogen produced from water. Scientists at Brookhaven National Laboratory have used a simple, “green” process to create a new core-shell catalyst that tolerates carbon monoxide in fuel cells.

Supercomputing the transition from ordinary to extraordinary forms of matter

September 18, 2013 8:15 am | News | Comments

To get a better understanding of the subatomic soup that filled the early universe, and how it “froze out” to form the atoms of today’s world, scientists are taking a closer look at the nuclear phase diagram. Like a map that describes how the physical state of water morphs from solid ice to liquid to steam with changes in temperature and pressure, the nuclear phase diagram maps out different phases of the components of atomic nuclei.

Shedding new light on the “electron highways” of organic solar cells

September 3, 2013 9:07 am | News | Comments

Researchers at Brookhaven National Laboratory and Stony Brook Univ. have developed a way to map out the degree of "traffic congestion" on the electron highways within the photoactive layer of organic solar cells. Their new measurement and tracking technique uses optical-guided modes to help scientists better understand how the materials used in the photoactive layers influence the speed and efficiency of electron travel.

Tracking the disappearance of ghost-like neutrinos

August 22, 2013 7:42 am | News | Comments

The international Daya Bay Collaboration has announced new results about the transformations of neutrinos. The latest findings include the collaboration’s first data on how neutrino oscillation, in which neutrinos mix and change into other “flavors,” or types, as they travel, varies with neutrino energy, allowing the measurement of a key difference in neutrino masses known as mass splitting.

Advertisement

Interface superconductivity withstands variations in atomic configuration

August 6, 2013 8:54 am | News | Comments

Scientists at Brookhaven National Laboratory have discovered an unexpected and anomalous pattern in the behavior of one high-performing class of HTS materials. In the new frontier of interface physics, two non-conducting materials can be layered to produce HTS behavior, with tantalizing and mystifying results.

Scientists discover hidden magnetic waves in high-temperature superconductors

August 5, 2013 8:32 am | News | Comments

Scientists at Brookhaven National Laboratory and other collaborating institutions have discovered a surprising twist in the magnetic properties of high-temperature superconductors, challenging some of the leading theories. In a new study, scientists found that unexpected magnetic excitations—quantum waves believed by many to regulate HTS—exist in both non-superconducting and superconducting materials.

Mysterious giant magnet attracts rock-star status

July 29, 2013 9:21 am | by Jason Keyser and Scott Eisen, Associated Press | News | Comments

It skipped tolls. It had a Twitter hashtag and a GPS tracker. It even posed for photos with groupies. Yet the 15-ton shrink-wrapped cargo remained a mystery to most who saw it along the slow, delicate 3,200-mile journey from New York to suburban Chicago. Now that it has arrived at the Fermi National Accelerator Laboratory, the giant electromagnet will be unveiled to help study fast particles.

A new way to study, improve catalytic reactions

July 22, 2013 9:45 am | News | Comments

Catalysts are everywhere. They make chemical reactions that normally occur at extremely high temperatures and pressures possible within factories, cars and the comparatively balmy conditions within the human body. Developing better catalysts, however, is mainly a hit-or-miss process. Now, researchers have shown a way to precisely design the active elements of a certain class of catalysts.

Using pressure to swell pores, not crush them

July 17, 2013 9:51 am | by Steven Powell, Univ. of South Carolina | News | Comments

More than a decade ago, two researchers uncovered a counter-intuitive property of zeolites. When they put these porous minerals in water, and then put the water under high pressure, the tiny cavities within the zeolites actually grew in size. Recent x-ray diffraction studies by the team have revealed the interior geometry of the cavities and the arrangement of the cations and water molecules held within, before and after pressurization.

Advertisement

Researchers find factors needed for magnetically mediated superconductivity

July 15, 2013 9:28 am | News | Comments

In the search for understanding how some magnetic materials can be transformed to carry electric current with no energy loss, scientists have used an experimental technique to measure the energy required for electrons to pair up and how that energy varies with direction. The method measures energy levels as small as one ten-thousandth the energy of a single light photon.

Successful test of U.S. magnet puts LHC on track for major upgrade

July 12, 2013 7:17 am | News | Comments

The U.S. LHC Accelerator Program (LARP) has successfully tested a powerful superconducting quadrupole magnet that will play a key role in developing a new beam focusing system for CERN’s Large Hadron Collider (LHC). This advanced system, together with other major upgrades to be implemented over the next decade, will allow the LHC to produce 10 times more high-energy collisions than it was originally designed for.

X-rays point way to tinier transistors

July 3, 2013 3:14 pm | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

In the constant push for smaller transistors, researchers have been investigating oxides with higher K, or dielectric constant, values. Materials such as germanium, hafnium, and titanium are being investigated for this role, but many prototypes leak electrons. At the National Synchrotron Light Source, x-rays are being used to probe the electronic behavior of a germanium-based transistor structure that could offer a  solution.

Scientists identify promising antiviral compounds

July 2, 2013 2:39 pm | News | Comments

Scientists at Brookhaven National Laboratory have identified two promising candidates for the development of drugs against human adenovirus, a cause of ailments ranging from colds to gastrointestinal disorders to pink eye. A recently published paper describes how the researchers sifted through thousands of compounds to determine which might block the effects of a key viral enzyme they had previously studied in atomic-level detail.

A new high-energy record for LCLS

June 18, 2013 11:25 am | News | Comments

John Hill, a Brookhaven National Laboratory scientist, and his team watched with eager anticipation as controllers ramped up the power systems driving SLAC National Accelerator Laboratory's x-ray laser in an attempt to achieve the record high energies needed to make his experiment a runaway success. To reach the high x-ray energies they were aiming for, all of the 80 klystrons associated with LCLS would need to operate at near-peak levels.

Scientists moving 15-ton magnet from N.Y. to Chicago

June 17, 2013 6:20 pm | by Frank Eltman, Associated Press | News | Comments

Scientists on Long Island are preparing to move a 50-foot-wide electromagnet 3,200 miles over land and sea to its new home at the U.S. Department of Energy's Fermi National Accelerator Laboratory in Illinois. The trip, starting at Brookhaven National Laboratory, is expected to take more than a month.

Exposure to air transforms gold alloys into catalytic nanostructures

June 12, 2013 7:27 am | News | Comments

Gold bars may signify great wealth, but gold packs a much more practical punch when shrunk down to nanoscale. Unfortunately, unlocking its potential often requires complex synthesis techniques that produce delicate structures with sensitivity to heat. Now, scientists have discovered a process of creating uniquely structured gold-indium nanoparticles that combine high stability, great catalytic potential and a simple synthesis process.

Atomic-scale investigations solve key puzzle of LED efficiency

May 22, 2013 7:58 am | News | Comments

From the high-resolution glow of flat screen televisions to light bulbs that last for years, light-emitting diodes (LEDs) continue to transform technology. Their full potential, however, remains untapped. A contentious controversy surrounds the high intensity of indium gallium nitride, with experts split on whether or not indium-rich clusters within the material provide the LED's remarkable efficiency.

DNA-guided assembly yields ribbon-like nanostructures

May 16, 2013 12:20 pm | News | Comments

Scientists at Brookhaven National Laboratory have discovered that DNA "linker" strands coax nano-sized rods to line up in way unlike any other spontaneous arrangement of rod-shaped objects. The arrangement—with the rods forming "rungs" on ladder-like ribbons linked by multiple DNA strands—results from the collective interactions of the flexible DNA tethers and may be unique to the nanoscale.

New insight into early growth of solid thin-films

May 14, 2013 10:07 am | News | Comments

Thin films sometimes grow layer by layer, each layer one atom thick, while in other cases atoms deposited onto a surface form 3D islands that grow, impinge, and coalesce into a continuous film. Scientists have traditionally assumed that the islands are homogeneous and coalesce at roughly the same time. In a recent study, researchers have discovered that the process is more dynamic than suggested by the traditional view.

Recipe for low-cost, biomass-derived catalyst for hydrogen production

April 24, 2013 8:06 am | News | Comments

In recently published online paper, researchers at Brookhaven National Laboratory describe details of a low-cost, stable, effective catalyst that could replace costly platinum in the production of hydrogen. The catalyst, made from renewable soybeans and abundant molybdenum metal, produces hydrogen in an environmentally friendly, cost-effective manner, potentially increasing the use of this clean energy source.

Battery research at NSLS aims to solve energy storage challenges

April 5, 2013 9:17 am | News | Comments

The shrinking size and increasing capacity of batteries in the past few decades has made possible devices that have transformed everyday life. But small isn't the only frontier for battery technology. As the world enters its most energy-intensive era, the search is on for bigger, cheaper, and safer batteries that can capture, store, and efficiently use sustainable energy on a large scale. To determine how best to meet those large-scale energy needs, researchers are probing small-scale, off-the-shelf D-cell batteries.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading