Advertisement
Government Research Laboratories
Subscribe to Government Research Laboratories

The Lead

Team finds first evidence of spin symmetry in atoms

August 22, 2014 9:07 am | by Laura Ost, NIST | News | Comments

Just as diamonds with perfect symmetry may be unusually brilliant jewels, the quantum world has a symmetrical splendor of high scientific value. Confirming this exotic quantum physics theory, JILA physicists have observed the first direct evidence of symmetry in the magnetic properties—or nuclear “spins”—of atoms.

Shaping the future of nanocrystals

August 22, 2014 8:55 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | Videos | Comments

The first direct observations of how facets form and develop on platinum nanocubes point the way...

Electric sparks may alter evolution of lunar soil

August 22, 2014 8:18 am | by David Sims, Institute for the Study of Earth, Oceans and Space, Univ. of New Hampshire | News | Comments

The moon appears to be a tranquil place, but modeling done by Univ. of New Hampshire and NASA...

Clues uncovered to role of magnetism in iron-based superconductors

August 22, 2014 7:57 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

New measurements of atomic-scale magnetic behavior in iron-based superconductors by researchers...

View Sample

FREE Email Newsletter

Researchers map quantum vortices inside superfluid helium nanodroplets

August 22, 2014 7:41 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Scientists have, for the first time, characterized so-called quantum vortices that swirl within tiny droplets of liquid helium. The research, led by scientists at Lawrence Berkeley National Laboratory, the Univ. of Southern California and SLAC National Accelerator Laboratory, confirms that helium nanodroplets are in fact the smallest possible superfluidic objects and opens new avenues for studying quantum rotation.

Microarray for Complex Chemotyping

August 21, 2014 4:05 pm | Award Winners

Whether the application is biofuels, microbial ecological investigation or medical research, Lawrence Berkeley National Laboratory’s Berkeley Lab Multiplex Chemotyping Microarray (MCM) has proven to be the most powerful and precise system for investigations of biomass at the molecular level. MCM performs rapid chemical analyses of prospective biofuel crops and microbial communities by combining high-throughput micro-contact printing technology with high-fidelity vibrational spectroscopy and mass spectrometry.

Powerful Single-output Laser

August 21, 2014 3:36 pm | Award Winners

Spectral beam combining (SBC) of fiber lasers offers a straightforward approach for power scaling. The approach exploits the broad gain bandwidth to enable large numbers of fiber laser channels to be combined with near-diffraction-limited beam quality. Rigorous application of SBC has allowed a development team including Lawrence Livermore National Laboratory, Lockheed Martin Laser and Sensor Systems and Advanced Thin Films to develop the EXtreme-power, Ultra-low-loss, Dispersive Element (EXUDE) optical element, the first-ever electrically efficient, near diffraction-limited 30-kW beam combined laser.

Advertisement

microTLC Fills Gaps in Detection

August 21, 2014 11:57 am | Award Winners

Filling major gaps in field testing for explosives and narcotics, Lawrence Livermore National Laboratory’s microTLC is a miniaturized, field-portable thin layer chromatography (TLC) kit used to detect and identify unknowns. Originally developed to identify military explosives, the device has been modified to also identify and determine the purity of illicit drugs, pesticides and other compounds.

Nuclear reactor reliability: Fast test proves viable

August 21, 2014 8:12 am | by Kate McAlpine, Univ. of Michigan | News | Comments

A speedy way to mimic the aging of materials inside nuclear reactors has matched all aspects of the damage sustained by a real reactor component for the first time. The method could help the U.S. and other countries stay ahead of potential problems in reactors that run for 40 years or more and also test materials for building advanced reactors.

Water leads to chemical that gunks up biofuels production

August 21, 2014 7:53 am | by Mary Beckman, Pacific Northwest National Laboratory | Videos | Comments

Trying to understand the chemistry that turns plant material into the same energy-rich gasoline and diesel we put in our vehicles, researchers have discovered that water in the conversion process helps form an impurity which, in turn, slows down key chemical reactions. The study, which was reported online at the Journal of the American Chemical Society, can help improve processes that produce biofuels from plants.

Water-cooled Perfection

August 20, 2014 4:47 pm | Award Winners

Hewlett-Packard and National Renewable Energy Laboratory’s HP Apollo supercomputing platform approaches HPC from an entirely new perspective as the system is cooled directly with warm water. This is done through a “dry-disconnect” cooling concept that has been implemented with the simple but efficient use of heat pipes. Unlike cooling fans, which are designed for maximum load, the heat pipes can be optimized by administrators.

Chaos that Brings Order

August 20, 2014 4:29 pm | Award Winners

Oak Ridge National Laboratory’s DUCCS is ultra-efficient software that utilizes highly parallel chaotic map computations to quickly (in a few minutes) and efficiently detect component faults in computing units, memory elements and interconnects of hybrid CPU-GPU computing systems.

Advertisement

Researchers create engineered energy-absorbing material

August 20, 2014 9:36 am | by James A Bono, LLNL | News | Comments

Materials like solid gels and porous foams are used for padding and cushioning, but each has its own advantages and limitations. To overcome limitations, a team from Lawrence Livermore National Laboratory has found a way to design and fabricate, at the microscale, new cushioning materials with a broad range of programmable properties and behaviors that exceed the limitations of the material's composition through 3-D printing.

NMR using Earth’s magnetic field

August 20, 2014 8:19 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Earth’s magnetic field, a familiar directional indicator over long distances, is routinely probed in applications ranging from geology to archaeology. Now it has provided the basis for a technique which might, one day, be used to characterize the chemical composition of fluid mixtures in their native environments.

Particulate Filter Relies on RF

August 19, 2014 4:54 pm | Award Winners

Jointly developed by Filter Sensing Technologies Inc., Massachusetts Institute of Technology and Oak Ridge National Laboratory, the RF-DPF Diesel Particulate Filter Sensor is a radio frequency (RF)-based sensor and control system used to measure the amount, type and distribution of contaminants on ceramic diesel particulate filters (DPFs).

A Safire in the Rough

August 19, 2014 3:51 pm | Award Winners

A multi-phase flow meter, Los Alamos National Laboratory’s Safire provides noninvasive, real-time and accurate estimates of oil production for every well. Jointly developed with Chevron ETC and GE Measurement & Control, Safire achieves measurement rates as high as 100 readings/sec, including computation time.

No Overcharging Here

August 19, 2014 2:14 pm | Award Winners

Thorough testing by A123 Systems LLC has shown that ANL-RS2 Advanced Redox Shuttle Additive is a highly reliable and high-performance electrolyte additive for EV battery cells using LiFePO4 as the cathode material. When dissolved in the electrolyte of a LiFePO4-based lithium-ion battery cell, the ANL-RS2 Redox Shuttle Additive remains inert until the potential of the cell increases from 3.6 to 3.9 V during an overcharging event.

Advertisement

A Magnetic Solution to Power Flow

August 19, 2014 1:09 pm | Award Winners

The control of power flow in power systems is a major concern for utilities and system operators. But full power flow control has been prohibitively expensive, requiring large numbers of complicated and costly devices. As a result, power systems almost always operate sub-optimally at billions of dollars per year. A simple, magnetic-field-based valve-like device for power flow control, the Continuously Variable Series Reactor (CVSR), developed by Oak Ridge National Laboratory, SPX Transformer Solutions Inc. and the Univ. of Tennessee, has introduced substantial improvements.

A Leap in Power Generation

August 19, 2014 12:37 pm | Award Winners

Pacific Northwest National Laboratory’s Solar Thermochemical Advanced Reactor System (STARS) addresses a major criticism of solar energy, which, like wind power, can’t provide continuous output. Because of its design, STARS doesn’t require power plants to cease operations when the sun sets or clouds cover the sky.

Cooling for Space Applications

August 19, 2014 11:34 am | Award Winners

NASA Glenn Research Center and Thermacore Inc. have developed Therma-Base. Therma-Base is a heat pump design that offers several advantages in addition to its basic passive heat transfer capability: simple and reliable operation; highly effective thermal conductivity; no moving parts; and quiet, vibration-free operation.

The Eye as a Screen

August 19, 2014 11:30 am | Award Winners

Current wearable media devices can cause eye strain, induce nausea or create other discomforts, particularly over extended periods. Such devices also struggle to provide the natural depth of perception necessary for a true 3-D experience. Designed to correct these shortcomings, Pacific Northwest National Laboratory and Avegant’s Glyph uses a micromirror array and a combination of proprietary optics in a head-mounted display to reflect an image from a media source directly onto the retina using the viewer’s own eye lens, effectively making the back of the eyeball into a screen.

Low-friction Engine Oil

August 19, 2014 11:07 am | Award Winners

A research team that includes Oak Ridge National Laboratory, General Motors Research and Development Center, Shell Global Solutions and Lubrizol Corp. has developed a new group of ionic liquids (ILs) for use as next-generation lubricant additives. The molecules of these oil-miscible, phosphorus-containing, halogen-free ILs have a strong tendency to physically absorb to the metallic bearing surface by electrical attraction.

Responding to Crystal Defects

August 19, 2014 10:59 am | Award Winners

Cadmium zinc telluride (CZT) gamma-ray detectors are important new components in spectroscopic imaging systems because they are the first detectors capable of distinguishing natural gamma-ray background and radioactive isotopes without the need for bulky cooling equipment. The technological difficulties of producing perfect crystals, however, have hindered widespread usage. Brookhaven National Laboratory has successfully addressed these challenges with the introduction of the GammaScout.

X-rays Provide Higher Energy Resolution

August 19, 2014 10:52 am | Award Winners

X-ray spectroscopy is widely used to determine the elemental and chemical composition of materials. However, Lawrence Livermore National Laboratory and STAR Cryoelectronics LLC’s Superconducting Tunnel Junction (STJ) X-ray Spectrometer offers more than 10 times higher energy resolution than current x-ray spectrometers based on silicon or germanium semiconductors.

Probing the Liquid Vacuum Interface

August 19, 2014 10:43 am | Award Winners

Important scientific studies require precise knowledge of the unique properties at the interface between liquids and solids or at the liquid surface itself. Analyzing these properties has proven difficult because many key analytical instruments are vacuum-based. Pacific Northwest National Laboratory has developed SALVI: System for Analysis at the Liquid Vacuum Interface as a solution.

Faster Aircraft Defect Analysis

August 19, 2014 10:42 am | Award Winners

In an effort to address the apparent shortcomings in modern inspection technology, Los Alamos National Laboratory developed an Acoustic Wavenumber Spectroscopy (AWS) instrument that performs nondestructive inspection more quickly and easily than prior spectroscopy solutions.

First indirect evidence of so-far undetected strange baryons

August 19, 2014 10:06 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic Heavy Ion Collider, a facility that is dedicated to studying nuclear physics. These heavy strange baryons, containing at least one strange quark, still cannot be observed directly.

Study: Price of wind energy in U.S. at all-time low

August 19, 2014 9:42 am | by Allen Chen, Lawrence Berkeley National Laboratory | News | Comments

Wind energy pricing is at an all-time low, according to a new report released by the U.S. Dept. of Energy and prepared by Lawrence Berkeley National Laboratory. The prices offered by wind projects to utility purchasers averaged just $25/MWh for projects negotiating contracts in 2013, spurring demand for wind energy.

Bionic liquids from lignin

August 19, 2014 7:44 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

While the powerful solvents known as ionic liquids show great promise for liberating fermentable sugars from lignocellulose and improving the economics of advanced biofuels, an even more promising candidate is on the horizon—bionic liquids. Researchers at the Joint BioEnergy Institute have developed “bionic liquids” from lignin and hemicellulose, two by-products of biofuel production from biorefineries.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading