Advertisement
Physics
Subscribe to Physics
View Sample

FREE Email Newsletter

Chirping electrons: Cyclotron radiation from single electrons measured directly for first time

April 29, 2015 11:26 am | by PNNL | News | Comments

A year before Albert Einstein came up with the special theory of relativity, or E=mc2, physicists predicted the existence of something else: cyclotron radiation. Scientists predicted this radiation to be given off by electrons whirling around in a circle while trapped in a magnetic field. Over the last century, scientists have observed this radiation from large ensembles of electrons but never from individual ones. Until now.

Making robots more human

April 29, 2015 11:17 am | by ACS | News | Comments

Most people are naturally adept at reading facial expressions — from smiling and frowning to brow-furrowing and eye-rolling — to tell what others are feeling. Now scientists have developed ultra-sensitive, wearable sensors that can do the same thing.

The super-particle is called a Bose-Einstein condensate, where the term condensate denotes a group of particles that all behave in the same way. That it should be possible to create such a condensate was first proposed theoretically by Bose and Einstein i

Quantum particles at play: Game theory elucidates the collective behavior of bosons

April 28, 2015 11:16 am | by LMU Munich | News | Comments

Quantum particles behave in strange ways and are often difficult to study experimentally. Using mathematical methods drawn from game theory, LMU physicists have shown how bosons, which like to enter the same state, can form multiple groups.

Advertisement

Heat makes electrons spin in magnetic superconductors

April 28, 2015 10:31 am | by Academy of Finland | News | Comments

Physicists have shown how heat can be used to control the magnetic properties of matter. The finding helps in the development of more efficient mass memories. In the study, the researchers showed how heat is converted into a spin current in magnetic superconductors. Magnetic superconductors can be fabricated by placing a superconducting film on top of a magnetic insulator.

When mediated by superconductivity, light pushes matter million times more

April 28, 2015 10:24 am | by University of Jyväskylä | News | Comments

When a mirror reflects light, it experiences a slight push. This radiation pressure can be increased considerably with the help of a small superconducting island. The finding paves a way for the studies of mechanical oscillations at the level of a single photon, the quantum of light.

Negative electronic compressibility: More is less in novel material

April 27, 2015 2:19 pm | by Boston College | News | Comments

Add water to a half-filled cup and the water level rises. This everyday experience reflects a positive material property of the water-cup system. But what if adding more water lowers the water level by deforming the cup? This would mean a negative compressibility. Now, a quantum version of this phenomenon, called negative electronic compressibility (NEC), has been discovered.

A microplasma is created by focusing intense laser pulses in air. Besides visible light, the microplasma emits electromagnetic pulses at terahertz frequencies that can be used to detect complex molecules, such as explosives and drugs. Courtesy of J. Adam

Generating broadband terahertz radiation from a microplasma in air

April 27, 2015 12:32 pm | by University of Rochester | News | Comments

Researchers have shown that a laser-generated microplasma in air can be used as a source of broadband terahertz radiation. They demonstrate that an approach for generating terahertz waves using intense laser pulses in air—first pioneered in 1993—can be done with much lower power lasers, a major challenge until now.

Device Weighs, Images Individual Molecules

April 27, 2015 10:43 am | by Caltech | News | Comments

Building on their creation of the first-ever mechanical device that can measure the mass of individual molecules, one at a time, a team of scientists have created nanodevices that can also reveal their shape. Such information is crucial when trying to identify large protein molecules or complex assemblies of protein molecules.

Advertisement

Research Reveals Structures of Gold Nanoparticles

April 27, 2015 10:31 am | by Univ. of Nebraska–Lincoln | News | Comments

They may deal in gold, atomic staples and electron volts rather than cement, support beams and kilowatt-hours, but chemists have drafted new nanoscale blueprints for low-energy structures capable of housing pharmaceuticals and oxygen atoms. New research has revealed four atomic arrangements of a gold nanoparticle cluster.

JILA's strontium lattice atomic clock now performs better than ever because scientists literally "take the temperature" of the atoms' environment. Two specialized thermometers, calibrated by NIST researchers and visible in the center of the photo, are ins

Getting better all the time: JILA strontium atomic clock sets new records

April 24, 2015 10:57 am | by NIST | News | Comments

In another advance at the far frontiers of timekeeping by NIST researchers, the latest modification of a record-setting strontium atomic clock has achieved precision and stability levels that now mean the clock would neither gain nor lose one second in some 15 billion years—roughly the age of the universe.

A team of researchers using the Advanced Photon Source, above, a U.S. Department of Energy Office of Science User Facility at Argonne National Laboratory, demonstrated unparalleled sensitivity for measuring the distribution of trace elements in thicker sp

X-ray ptychography, fluorescence microscopy combo sheds new light on trace elements

April 24, 2015 10:44 am | by Angela Hardin, Argonne National Laboratory | News | Comments

Scientists have developed a new approach that combines ptychographic x-ray imaging and fluorescence microscopy to study the important role trace elements play in biological functions on hydrated cells. A team of researchers using the Advanced Photon Source demonstrated unparalleled sensitivity for measuring distribution of trace elements in thicker specimens at cryogenic temperatures, in this case at about 260 degrees below Fahrenheit.

The ‘gate sensor’ is so accurate that it can detect the charge of a single electron in less than one microsecond.

Ultra-sensitive sensor detects individual electrons

April 24, 2015 10:25 am | by SINC | News | Comments

A Spanish-led team of European researchers at the Univ. of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has been dubbed the "gate sensor" and could be applied in quantum computers of the future to read information stored in the charge or spin of a single electron.

Heat makes electrons’ spin in magnetic superconductors

April 24, 2015 9:53 am | by Academy of Finland | News | Comments

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published in Physical Review Letters. The international research group behind the breakthrough included Finnish researchers from the University of Jyväskylä and Aalto Univ.

Advertisement

Method takes quantum sensing to a new level

April 24, 2015 8:09 am | by Ron Walli, Oak Ridge National Laboratory | News | Comments

Thermal imaging, microscopy and ultra-trace sensing could take a quantum leap with a technique developed by researchers at Oak Ridge National Laboratory. Their work overcomes fundamental limitations of detection derived from the Heisenberg uncertainty principle, which states that the position and momentum of a particle cannot be measured with absolute precision.

Researchers use novel polarization to increase data speeds

April 24, 2015 7:53 am | by Jay Mwamba, The City College of New York | News | Comments

As the world’s exponentially growing demand for digital data slows the Internet and cell phone communication, City College of New York researchers may have just figured out a new way to increase its speed.

A silver lining

April 24, 2015 7:43 am | by Julie Cohen, Univ. of California, Santa Barbara | News | Comments

The silver used by Beth Gwinn’s research group at the Univ. of California, Santa Barbara, has value far beyond its worth as a commodity, even though it’s used in very small amounts. The group works with the precious metal to create nanoscale silver clusters with unique fluorescent properties. These properties are important for a variety of sensing applications including biomedical imaging.

The compact photon source, which is being developed by Berkeley Lab, Lawrence Livermore National Laboratory, and Idaho National Laboratory, is tunable, allowing users to produce MeV photons within very specific narrow ranges of energy, an improvement that

National security on the move with high energy physics

April 23, 2015 11:43 am | by Theresa Duque, Berkley Lab | News | Comments

Scientists are developing a portable technology that will safely and quickly detect nuclear material hidden within large objects such as shipping cargo containers or sealed waste drums. The researchers have been awarded over $10 million from the NNSA to combine the capabilities of conventional building-size research instruments with the transportable size of a truck for security applications on the go.

Under certain conditions, two individual, indistinguishable photons will form a pair as a result of interference. This subtle quantum effect has been successfully imaged for the first time by Michał Jachura and Radosław Chrapkiewicz, doctoral students at

Quantum ‘paparazzi’ film photons in the act of pairing up

April 23, 2015 11:34 am | by University of Warsaw | News | Comments

In the quantum world of light, being distinguishable means staying lonely. Only those photons that are indistinguishable can wind up in a pair, through what is called Hong-Ou-Mandel interference. This subtle quantum effect has been successfully imaged for the first time by two doctoral students from the Faculty of Physics at the University of Warsaw.

High-power diode laser module for space applications: Micro-integrated Extended Cavity Diode Laser (ECDL) for laser spectroscopy of rubidium atoms in space. This module has been used on April 23 for tests on board the FOKUS research rocket aiming to demon

Examining Einstein – precise experiments using lasers in space

April 23, 2015 11:20 am | by Forschungsverbund Berlin | News | Comments

Albert Einstein tells us that clocks run slower the deeper they are in the gravitational potential well of a mass. This effect is described by General Relativity Theory as the gravitational red shift. General Relativity Theory also predicts that the rates of all clocks are equally influenced by gravitation independent of how these clocks are physically or technically constructed. However, more recent theories of gravitation...

From metal to insulator and back again

April 23, 2015 8:45 am | by Carnegie Institution | News | Comments

New work from the Carnegie Institution’s Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Metals are compounds that are capable of conducting the flow of electrons that make up an electric current.

Boiling down viscous flow

April 23, 2015 7:41 am | by Jennifer Chu, MIT News Office | News | Comments

Drizzling honey on toast can produce mesmerizing, meandering patterns, as the syrupy fluid ripples and coils in a sticky, golden thread. Dribbling paint on canvas can produce similarly serpentine loops and waves. The patterns created by such viscous fluids can be reproduced experimentally in a setup known as a “fluid mechanical sewing machine,” in which an overhead nozzle deposits a thick fluid onto a moving conveyor belt.

Phonons, arise!

April 22, 2015 8:16 am | by Neal Singer, Sandia National Laboratories | News | Comments

Modern research has found no simple, inexpensive way to alter a material’s thermal conductivity at room temperature. That lack of control has made it hard to create new classes of devices that use phonons, rather than electrons or photons, to harvest energy or transmit information. Phonons have proved hard to harness.

Combing through terahertz waves

April 22, 2015 8:02 am | by Kimm Fesenmaier, Caltech | News | Comments

Light can come in many frequencies, only a small fraction of which can be seen by humans. Between the invisible low-frequency radio waves used by cell phones and the high frequencies associated with infrared light lies a fairly wide swath of the electromagnetic spectrum occupied by what are called terahertz, or sometimes submillimeter, waves.

Nanophotonics with ultracold atoms for simulating quantum many-body systems

April 21, 2015 10:46 am | by Max Planck Society | News | Comments

Ultracold atoms in the so-called optical lattices, which are generated by crosswise superposition of laser beams, have proven to be one of the most promising tools for simulating and understanding the behavior of many-body systems. However, the implementation in free space has some limitations such as the distance between the atoms (around 400 nm) and the short range of the interactions.

Electron trapping harnessed to make light sensors

April 21, 2015 10:34 am | by Mark Esser, NIST | News | Comments

Traps. Whether you’re squaring off against the Empire or trying to wring electricity out of sunlight, they’re almost never a good thing. But sometimes you can turn that trap to your advantage. A team from the Univ. of Nebraska-Lincoln, working with researchers at NIST, has shown that electron-trapping defects that are typically problematic in solar cells can be an asset when engineering sensitive light detectors.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading