Advertisement
Physics
Subscribe to Physics
View Sample

FREE Email Newsletter

What to expect next from the world’s largest particle accelerator

February 23, 2015 7:56 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

In March, when researchers flip the switch to the world’s largest, most powerful particle accelerator, scientists from all over the world will be watching. Physicists expect the refurbished, higher-energy Large Hadron Collider (LHC) will build on the 2012 discovery of the Higgs particle and crack open even more mysteries of the universe.

Igniting the air for atmospheric research

February 19, 2015 9:14 am | by Vienna Univ. of Technology | News | Comments

Scientists have created a high-energy mid-infrared laser powerful enough to create shining filaments in the air. Such devices could be used to detect chemical substances in the atmosphere.

Building a more versatile frequency comb

February 17, 2015 7:25 pm | by Amanda Morris, Northwestern Univ. | News | Comments

Frequency combs are the rulers of light. By counting a wavelength's many oscillations, they measure distance and time with extraordinary precision and speed. Since the discovery of optical frequency combs in the 1990s, many applications in metrology, spectroscopy and frequency synthesis have emerged.

Advertisement

Researchers develop algorithm to make simulation of ultra-fast processes possible

February 17, 2015 7:17 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

When electronic states in materials are excited during dynamic processes, interesting phenomena such as electrical charge transfer can take place on quadrillionth-of-a-second, or femtosecond, timescales. Numerical simulations in real time provide the best way to study these processes, but such simulations can be extremely expensive.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

First glimpse of a chemical bond being born

February 13, 2015 1:49 pm | by Andrew Gordon, SLAC National Accelerator Laboratory | Videos | Comments

Scientists have used an x-ray laser at SLAC National Accelerator Laboratory to get the first glimpse of the transition state where two atoms begin to form a weak bond on the way to becoming a molecule. This fundamental advance, long thought impossible, will have a profound impact on the understanding of how chemical reactions take place.

Getting in shape

February 13, 2015 1:25 pm | by Kaoru Natori, OIST | News | Comments

New research from the Micro/Bio/Nanofluidics Unit at OIST looks at how to create various non-spherical particles by releasing droplets of molten wax into a cool liquid bath. The physics behind this research shows how a range of non-spherical shapes can be produced and replicated with many possible industrial applications.

Correlations of quantum particles help in distinguishing physical processes

February 13, 2015 10:29 am | by Univ. of Strathclyde | News | Comments

Communication security and metrology could be enhanced through a study of the role of quantum correlations in the distinguishability of physical processes, by researchers at the Univs. of Strathclyde and Waterloo. The study involved analyzing the impact of quantum steering.

Advertisement

Exotic states materialize with supercomputers

February 13, 2015 9:03 am | by Jorge Salazar, TACC | News | Comments

Scientists used supercomputers to find a new class of materials that possess an exotic state of matter known as the quantum spin Hall effect. The researchers published their results in Science in December 2014, where they propose a new type of transistor made from these materials. The team calculated the electronic structures of the materials using the Stampede and Lonestar supercomputers of the Texas Advanced Computing Center.

Mapping Can Recover Serial Numbers in Metals

February 13, 2015 7:00 am | by NIST | News | Comments

Researchers have demonstrated a technique for mapping deformation in metals that can recover destroyed serial numbers on metal objects such as firearms, a common challenge in forensics. The technique might also meet other forensic needs such as reconstructing vehicle identification numbers or imprints on ammunition casings.  

Find Key to Solving 30-year-old 'Hidden Order' Mystery

February 13, 2015 7:00 am | by Rutgers Univ. | News | Comments

A new explanation for a type of order, or symmetry, in an exotic material made with uranium may lead to enhanced computer displays and data storage systems, and more powerful superconducting magnets for medical imaging and levitating high-speed trains, according to a team of research physicists.

Polarized Protons Uncover Secrets

February 12, 2015 7:00 am | by Brookhaven National Laboratory | News | Comments

If you want to unravel the secrets of proton spin, put a "twist" in your colliding proton beams. This technique orients the colliding protons' spins in a particular direction, somewhat like tiny bar magnets with their North poles all pointing up.

To make novel atomic properties, engineers change electron trajectories

February 10, 2015 2:23 pm | by Yale Univ. | News | Comments

How do you make nickel look and behave like copper? A team of scientists at Yale Univ. has done just that by developing a novel technique to artificially alter a material’s atomic properties by substantially modifying the orbital properties of electrons. The electrons can also be tunably configured in orbital patterns with unique magnetic, superconductive and optical properties.

Advertisement

Electronics you can wrap around your finger

February 10, 2015 11:51 am | by American Institute of Physics | News | Comments

Electronic devices have shrunk rapidly in the past decades, but most remain as stiff as the same sort of devices were in the 1950s: a drawback if you want to wrap your phone around your wrist when you go for a jog or fold your computer to fit in a pocket. Researchers from South Korea have taken a new step toward more bendable devices by manufacturing a thin film that keeps its useful electric and magnetic properties even when highly curved.

Cesium atoms shaken, not stirred, to create elusive excitation in superfluid

February 6, 2015 8:04 am | by Steve Koppes, The Univ. of Chicago | News | Comments

Scientists discovered in 1937 that liquid helium-4, when chilled to extremely low temperatures, became a superfluid that could leak through glass, overflow its containers or eternally gush like a fountain. Future Nobel laureate Lev Landau came along in 1941, predicting that superfluid helium-4 should contain an exotic, particle-like excitation called a roton.

Noncommittal material could make for hypersensitive magnetic direction detector

February 4, 2015 11:07 am | by Mark Esser, NIST | News | Comments

While the mysterious, unseen forces magnets project are now (mostly) well understood, they can still occasionally surprise us. For instance, thin films of cobalt have been observed to spontaneously switch their poles: something that typically doesn’t happen in the absence of an external magnetic field. Physicists at NIST and the Univ. of Maryland have measured this phenomenon on the largest scale yet.

Industrial pump inspired by flapping bird wings

February 4, 2015 8:26 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

Birds are unwitting masters of fluid dynamics: They manipulate airflow each time they flap their wings, pushing air in one direction and moving themselves in another. Two New York Univ. researchers have taken inspiration from avian locomotion strategies and created a pump that moves fluid using vibration instead of a rotor.

Hidden uncertainties uncovered in nuclear forensic measurement

February 3, 2015 12:16 pm | by Ryan Fitzgerald, NIST | News | Comments

A little detective work by nuclear physicists has uncovered hidden uncertainties in a popular method for precisely measuring radioactive nuclides, often used to make reference materials for forensic analyses such as radioactive dating. The much-used method, called α/β-γ anticoincidence counting, has long relied on simplified assumptions. Now researchers from NIST have produced a more realistic model.

Winding borders may enhance graphene

February 3, 2015 9:20 am | by Mike Williams, Rice Univ. | News | Comments

Far from being a defect, a winding thread of odd rings at the border of two sheets of graphene has qualities that may prove valuable to manufacturers, according to Rice Univ. scientists. Graphene rarely appears as a perfect lattice of chicken wire-like six-atom rings. When grown via chemical vapor deposition, it usually consists of “domains,” or separately grown sheets that bloom outward from hot catalysts until they meet up.

Evidence mounts for quantum criticality theory

January 30, 2015 4:01 pm | by Mike Williams, Rice Univ. | News | Comments

A new study by a team of physicists at Rice Univ., Zhejiang Univ., Los Alamos National Laboratory, Florida State Univ. and the Max Planck Institute adds to the growing body of evidence supporting a theory that strange electronic behaviors arise from quantum fluctuations of strongly correlated electrons.

Qubits with staying power

January 29, 2015 3:41 pm | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are experimental devices that promise exponential speedups on some computational problems. Where a bit in a classical computer can represent either a 0 or a 1, a quantum bit, or qubit, can represent 0 and 1 simultaneously, letting quantum computers explore multiple problem solutions in parallel. But such “superpositions” of quantum states are, in practice, difficult to maintain.

Quantum computer as detector shows space isn’t squeezed

January 29, 2015 10:42 am | by Robert Sanders, Univ. of California, Berkeley Media Relations | News | Comments

Ever since Einstein proposed his special theory of relativity in 1905, physics and cosmology have been based on the assumption that space looks the same in all directions: that it’s not squeezed in one direction relative to another. A new experiment by Univ. of California, Berkeley physicists used partially entangled atoms to demonstrate more precisely than ever before that this is true, to one part in a billion billion.

Missing link in metal physics explains Earth’s magnetic field

January 29, 2015 9:58 am | by Carnegie Institute | News | Comments

Earth’s magnetic field is crucial for our existence, as it shields the life on our planet’s surface from deadly cosmic rays. It is generated by turbulent motions of liquid iron in Earth’s core. Iron is a metal, which means it can easily conduct a flow of electrons that makes up an electric current. New findings show a missing piece of the traditional theory explaining why metals become less conductive when they are heated.

Using ocean waves to monitor offshore oil and gas fields

January 29, 2015 7:54 am | by Ker Than, Stanford Univ. | News | Comments

A technology developed by Stanford Univ. scientists for passively probing the seafloor using weak seismic waves generated by the ocean could revolutionize offshore oil and natural gas extraction by providing real-time monitoring of the subsurface while lessening the impact on marine life.

Ancient star system reveals Earth-sized planets forming near start of universe

January 28, 2015 10:34 am | by Verity Leatherdale, Univ. of Sydney | News | Comments

A sun-like star with orbiting planets, dating back to the dawn of the galaxy, has been discovered by an international team of astronomers. At 11.2 billion years old it is the oldest star with Earth-sized planets ever found and proves that such planets have formed throughout the history of the universe. The discovery used observations made by NASA's Kepler satellite.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading