Advertisement
Physics
Subscribe to Physics
View Sample

FREE Email Newsletter

Labs characterize carbon for batteries

July 15, 2014 8:04 am | by Mike Williams, Rice Univ. | News | Comments

Lithium-ion batteries could benefit from a theoretical model created at Rice Univ. and Lawrence Livermore National Laboratory that predicts how carbon components will perform as electrodes. The model is based on intrinsic electronic characteristics of materials used as battery anodes. These include the material’s quantum capacitance and the material’s absolute Fermi level.

Getting a charge out of water droplets

July 15, 2014 7:53 am | by David L. Chandler, MIT News Office | News | Comments

Last year, Massachusetts Institute of Technology researchers discovered that when water droplets spontaneously jump away from superhydrophobic surfaces during condensation, they can gain electric charge in the process. Now, the same team has demonstrated that this process can generate small amounts of electricity that might be used to power electronic devices.

Researchers demonstrate novel, tunable nanoantennas

July 14, 2014 1:39 pm | News | Comments

A research team in Illinois has built a new type of tunable nanoscale antenna that could facilitate optomechanical systems that actuate mechanical motion through plasmonic field enhancements. The team’s fabrication process shows for the first time an innovative way of fabricating plasmonic nanoantenna structures under a scanning electron microscope, which avoids complications from conventional lithography techniques.

Advertisement

World’s first photonic router demonstrated

July 14, 2014 11:16 am | News | Comments

Scientists in Israel have recently constructed, for the first time, a photonic router that enables routing of single photons by single photons. At the core of the device is an atom that can switch between two states. The state is set just by sending a single particle of light, or photon, from the right or the left via an optical fiber. The innovation could help overcome difficulties in building quantum computers.

Deep within spinach leaves, vibrations enhance efficiency of photosynthesis

July 14, 2014 7:46 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

Biophysics researchers have used short pulses of light to peer into the mechanics of photosynthesis and illuminate the role that molecule vibrations play in the energy conversion process that powers life on our planet. The findings could potentially help engineers make more efficient solar cells and energy storage systems.

Speeding up data storage by a thousand times with “spin current”

July 10, 2014 9:31 am | News | Comments

Spin current, in which an ultra-short laser pulse generates electrons all with the same spin, is a promising new technology which potentially allows data to be stored 1,000 times as fast as traditional hard drive. Researchers in The Netherlands have recently shown that generated spin current is actually able to cause a change in magnetization, hinting at practical application in the future.

Technology illuminates colder objects in deep space

July 10, 2014 7:42 am | News | Comments

Too cool and faint, many objects in the universe are impossible to detect with visible light. Now a Northwestern Univ. team has refined a new technology that could make these colder objects more visible, paving the way for enhanced exploration of deep space. The new technology uses a type II superlattice material called indium arsenide/indium arsenide antimonide (InAs/InAsSb).

Even geckos can lose their grip

July 9, 2014 2:17 pm | News | Comments

Geckos and spiders seem to be able to sit still forever upside down. But sooner or later the grip is lost, no matter how little force is acting on it. Engineers, using scanning electron microscopy, have recently demonstrated why this is so by showing how heat, and the subsequent movement of molecules at the nanoscale, eventually force loss of adhesion.

Advertisement

Highway for ultracold atoms in light crystals

July 9, 2014 2:10 pm | News | Comments

When a superconductor is exposed to a magnetic field, a surface current creates a magnetic field that cancels the field inside the superconductor. This phenomenon, known as the Meissner-Ochsenfeld effect, was first observed in 1933. In a research first, scientists have succeeded in measuring an analogue of the Meissner effect in an optical crystal with ultracold atoms. This validates theoretical predictions dating back more than 20 years.

Mercury: A result of early hit-and-run collisions

July 9, 2014 11:02 am | by Nikki Cassis, Arizona State Univ. | News | Comments

Planet Mercury’s unusual metal-rich composition has been a longstanding puzzle in planetary science. According to a study published online in Nature Geoscience, Mercury and other unusually metal-rich objects in the solar system may be relics left behind by collisions in the early solar system that built the other planets.

Gas hydrates by the slice

July 9, 2014 8:00 am | by Mike Williams, Rice Univ. | News | Comments

A decade of research by Rice Univ. scientists has produced a 2-D model to prove how gas hydrate, the “ice that burns,” is formed under the ocean floor. Gas hydrate has potential as a source of abundant energy, if it can be extracted and turned into usable form. It also has potential to do great harm.

New research shows that friction and fracture are interrelated

July 8, 2014 12:51 pm | News | Comments

Overturning conventional wisdom stretching all the way to Leonardo da Vinci, new research from Israel shows that how things break and how things slide are closely interrelated. The breakthrough study marks an important advance in understanding friction and fracture, with implications for describing the mechanics that drive earthquakes.

Models suggest that stretching forces shaped Jupiter moon's surface

July 8, 2014 12:46 pm | News | Comments

Processes that shaped the ridges and troughs on the surface of Jupiter's icy moon Ganymede are likely similar to tectonic processes seen on Earth, according to a team of researchers led by Southwest Research Institute. To arrive at this conclusion, the team subjected physical models made of clay to stretching forces that simulate tectonic action.

Advertisement

Physicists a step closer to finding mysterious cosmic ray sources

July 8, 2014 8:52 am | News | Comments

An observatory run by the Univ. of Utah has found a “hotspot” beneath the Big Dipper emitting a disproportionate number of the highest-energy cosmic rays. The discovery moves physics another step toward identifying the mysterious sources of the most energetic particles in the universe.

Nanoscale cooling element works in electrical insulators as well

July 8, 2014 8:45 am | News | Comments

An international research collaboration has designed a miniscule cooling element that uses spin waves to transport heat in electrical insulators. Although physicists have used spin for cooling purposes before, this is the first time that they have successfully done this in insulating materials. The cooling element could be used to dissipate heat in the increasingly smaller electrical components of computer chips.

Ultra-cold atom transport made simple

July 7, 2014 3:21 pm | News | Comments

Techniques for controlling ultra-cold atoms travelling in ring traps currently represent an important research area in physics. A new study out of Spain gives a proof of principle, confirmed by numerical simulations, of the applicability to ultra-cold atoms of a very efficient and robust transport technique called spatial adiabatic passage.

Consider the “anticrystal”

July 7, 2014 3:12 pm | News | Comments

For the last century, the concept of crystals has been a mainstay of solid-state physics. Crystals are paragons of order; crystalline materials are defined by the repeating patterns their constituent atoms and molecules make. Now physicists have evidence that a new concept should undergird our understanding of most materials: the anticrystal, a theoretical solid that is completely disordered.

The new atomic age: Building smaller, greener electronics

July 7, 2014 3:06 pm | by Bryan Alary, Univ. of Alberta | News | Comments

Robert Wolkow and his team at the Univ. of Alberta are working to engineer atomically precise computing technologies that have practical, real-world applications. In recent research, he and his team observed for the first time how an electrical current flows across the skin of a silicon crystal and also measured electrical resistance as the current moved over a single atomic step.

A young star's age can be gleaned from nothing but sound waves

July 7, 2014 9:42 am | News | Comments

Determining the age of stars has long been a challenge for astronomers. Recent experiments by researchers in Belgium show that “baby” stars can be distinguished from “adolescent” stars by measuring the acoustic waves they emit. This is because stars can vibrate due to sound waves bouncing inside, and those waves are detectable through subtle changes in stellar brightness.

“Deep learning” makes search for exotic particles easier

July 2, 2014 3:12 pm | News | Comments

Fully automated "deep learning" by computers greatly improves the odds of discovering particles such as the Higgs boson, according to a recent study. In fact, this approach beats even veteran physicists' abilities, which now consists of developing mathematical formulas by hand to apply to data. New machine learning methods are rendering that approach unnecessary.

Nature of solids and liquids explored through new pitch drop experiment

July 2, 2014 12:47 pm | News | Comments

Known as the “world's longest experiment”, an experiment at the University of Queensland in Australia was famous for taking ten years for a drop of pitch, a black, sticky material, to fall from a funnel. A new test in the U.K. is using a different bitumen, or pitch, which is 30 times less viscous than the Queensland experiment, so that the flow can be seen at a faster rate and hopefully provide more insights.

New NIST metamaterial gives light a one-way ticket

July 2, 2014 11:58 am | News | Comments

The light-warping structures known as metamaterials have a new trick in their ever-expanding repertoire. Researchers at NIST have built a silver, glass and chromium nanostructure that can all but stop visible light cold in one direction while giving it a pass in the other. The device could someday play a role in optical information processing and in novel biosensing devices.

Scientists discover how plastic solar panels work

July 1, 2014 11:52 am | News | Comments

Experts don't fully understand how “plastic” solar panels work, which complicates the improvement of their cost efficiency and hinders wider use of the technology. However, an international team has now determined how light beams excite the chemicals in solar panels, enabling them to produce charge. Their findings were made possible with the use of femtosecond Raman spectroscopy.

Study helps unlock mystery of high-temp superconductors

July 1, 2014 10:20 am | News | Comments

Using a scanning tunneling microscope to visualize the electronic structure of the oxygen sites within a superconductor, a Binghamton Univ. physicist and his colleagues say they have unlocked one key mystery surrounding high-temperature superconductivity. The team found a density wave with a d-orbital structure, which is a pattern new to this type of superconductor and they may be found in all cuprates.

Up in flames: Evidence confirms combustion theory

July 1, 2014 10:06 am | News | Comments

Researchers at Lawrence Berkeley National Lab and the Univ. of Hawaii have uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. The finding could help combustion chemists make more-efficient, less-polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading