Advertisement
Physics
Subscribe to Physics
View Sample

FREE Email Newsletter

Light frequencies sniff out deadly materials from a distance

October 9, 2014 10:56 am | News | Comments

Spectroscopic chemical sensing has great promise, but current technologies lack sensitivity and broad spectral coverage. DARPA’s Spectral Combs from UV to THz (SCOUT) program aims to overcome these limitations. The goal is to develop chip-sized, optical frequency combs that accurately identify even tiny traces of dangerous biological and chemical substances several football fields away, DARPA is now soliciting proposals for a solution.

NIST quantum probe enhances electric field measurements

October 9, 2014 8:37 am | News | Comments

Researchers at NIST and the Univ. of Michigan have demonstrated a technique based on the quantum properties of atoms that directly links measurements of electric field strength to the International System of Units. The new method could improve the sensitivity, precision and ease of tests and calibrations of antennas, sensors, and biomedical and nano-electronic systems and facilitate the design of novel devices.

Three win Nobel for super-zoom microscopes

October 8, 2014 9:20 am | by Karl Ritter and Malin Rising, Associated Press | News | Comments

Two Americans and a German scientist won the 2014 Nobel Prize in chemistry Wednesday for finding ways to make microscopes more powerful than previously thought possible. Working independently of each other, U.S. researchers Eric Betzig and William Moerner and Stefan Hell of Germany shattered previous limits on the resolution of optical microscopes by using molecules that glow on command to peer inside tiny components of life.

Advertisement

Researchers demonstrate how direct fluid flow influences neuron growth

October 7, 2014 2:11 pm | News | Comments

Axons are the shafts of neurons, on the tips of which connections are made with other neurons or cells. In a new study in Texas, researchers were able to use microfluidic stimulations to change the path of an axon at an angle of up to 90 degrees. The publication adds insight to the long accepted idea that chemical cues are primarily responsible for axonal pathfinding during human development and nervous system regeneration.

Quantum entanglement made tangible

October 7, 2014 2:00 pm | by Nik Papageorgiou, EPFL | News | Comments

Scientists at EPFL in Switzerland have designed a first-ever experiment for demonstrating quantum entanglement in the macroscopic realm. Unlike other such proposals, the experiment is relatively easy to set up and run with existing semiconductor devices.

Two Japanese, one American win Nobel for LED lights

October 7, 2014 9:10 am | by Karl Ritter and Malin Rising, Associated Press | Videos | Comments

Isamu Akasaki and Hiroshi Amano of Japan and U.S. scientist Shuji Nakamura won the 2014 Nobel Prize in physics for the invention of blue light-emitting diodes, a breakthrough that spurred the development of light-emitting diode (LED) technology. Scientists had struggled for decades to produce the blue diodes that are a crucial component in producing white light from LEDs when the three laureates made their breakthroughs in the early 1990s.

A quick look at electron-boson coupling

October 7, 2014 8:56 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Imagine being able to tune the properties of a solid material just by flashing pulses of light on it. That is one potential payoff of electrons and atoms interacting with ultrashort pulses of light. The technology of ultrafast spectroscopy is a key to understanding this phenomenon and now a new wrinkle to that technology, observations of electron self-energy, has been introduced by Lawrence Berkeley National Laboratory researchers.

Nanoparticles break the symmetry of light

October 6, 2014 12:59 pm | News | Comments

At the Vienna Univ. of Technology gold nanoparticles have been coupled to a glass fiber. The particles emit light into the fiber in such a way that it does not travel in both directions, as one would expect. Instead, the light can be directed either to the left or to the right. This became possible by employing the spin-orbit coupling of light, creating a new kind of optical switch that has the potential to revolutionize nanophotonics.

Advertisement

A closer look at the perfect fluid

October 3, 2014 9:30 am | by Kate Greene, Berkeley Lab | News | Comments

By combining data from two high-energy accelerators, nuclear scientists from Lawrence Berkeley National Laboratory and colleagues have refined the measurement of a remarkable property of exotic matter known as quark-gluon plasma. The findings reveal new aspects of the ultra-hot, “perfect fluid” that give clues to the state of the young universe just microseconds after the big bang.

A new approach to on-chip quantum computing

October 2, 2014 1:17 pm | News | Comments

Commercial devices capable of encrypting information in unbreakable codes exist today, thanks to recent quantum optics advances, especially the generation of photon pairs. Now, an international team is introducing a new method to achieve a different type of photon pair source that fits into the tiny space of a computer chip. The team’s method generates “mixed up” photon pairs from devices that are less than one square millimeter in area.

Stressed out: Research sheds new light on why rechargeable batteries fail

October 2, 2014 8:18 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Drawn relentlessly by their electrical charges, lithium ions in a battery surge from anode to cathode and back again. Yet, no one really understands what goes on at the atomic scale as lithium ion batteries are used and recharged. Using transmission electron microscopy, researchers are now glimpsing what can happen to anodes as lithium ions work their way into them. The “atomic shuffling” these ions perform leads to rapid anode failure.

Unexpected new mechanism reveals how molecules become trapped in ice

October 1, 2014 11:34 am | News | Comments

Ice contains many atoms and molecules trapped inside its structure. A team of Univ. of Chicago and Loyola Univ. researchers has discovered a new mechanism they call "stable energetic embedding" of atoms and molecules within ice. This mechanism explains how some molecules, such as CF4, or "carbon tetrafluoride", interact with and become embedded beneath ice surfaces.

Ultrafast remote switching of light emission

October 1, 2014 9:15 am | News | Comments

Researchers in the Netherlands can now, for the first time, remotely control a miniature light source at timescales of 200 trillionths of a second. Physicists have developed a way of remotely controlling the nanoscale light sources at an extremely short timescale. These light sources are needed to be able to transmit quantum information.

Advertisement

Researchers develop transparent nanoscintillators for radiation detection

September 30, 2014 7:56 am | by Traci Peterson, Univ. of Texas at Arlington | News | Comments

A Univ. of Texas at Arlington research team says recently identified radiation detection properties of a light-emitting nanostructure built in their lab could open doors for homeland security and medical advances. In a paper to be published in Optics Letters, the team describes a new method to fabricate transparent nanoscintillators by heating nanoparticles composed of lanthanum, yttrium and oxygen until a transparent ceramic is formed.

New imaging capability reveals possible key to extending battery lifetime, capacity

September 29, 2014 8:37 am | by Tona Kunz, Argonne National Laboratory | News | Comments

A novel x-ray technique used at the U.S. Department of Energy’s Advanced Photon Source has revealed surprising dynamics in the nanomechanics of operating batteries and suggests a way to mitigate battery failures by minimizing the generation of elastic energy. The method could open a path to wider use of these batteries in conjunction with renewable energy sources.

Cell sorting method separates 10 billion cells in 30 minutes

September 26, 2014 9:42 am | News | Comments

Almost all of today’s previously existing cell-sorting methods rely on what is called a single-cell analysis platform. A researcher in Hawaii took a different approach, inventing a bulk method that sorts different cell populations by tuning their solubility. Instead of targeting individual features, the  measurement principle sorts cells by differentiating their characteristic surface free energies.

A prison for photons in a diamond-like photonic crystal

September 26, 2014 9:08 am | News | Comments

Confined photons have many potential applications, such as efficient miniature lasers, on-chip information storage, or tiny sensors on pharmaceuticals. Making a structure that can capture photons is difficult, but scientists in the Netherlands have recently devised a new type of resonant cavity inside a photonic crystal that imprisons light in all three dimensions.

Discovery could pave way for spin-based computing

September 26, 2014 8:48 am | by Joe Miksch, Univ. of Pittsburgh | News | Comments

Electricity and magnetism rule our digital world. Semiconductors process electrical information, while magnetic materials enable long-term data storage. A Univ. of Pittsburgh research team has discovered a way to fuse these two distinct properties in a single material, paving the way for new ultrahigh density storage and computing architectures.

Solar explosions inside a computer

September 25, 2014 8:44 am | News | Comments

Strong solar flares can bring down communications and power grids on Earth. Physicists in Switzerland have examined the processes that take place when explosions occur on the Sun’s surface and have accurately reconstructed the statistical size distribution and temporal succession of the solar flares with a computer model. This has allowed them to make several new observations about the how these flares occur and behave.

When a doughnut becomes an apple

September 24, 2014 9:46 am | by Barbara Vonarburg, ETH Zurich | News | Comments

In experiments using graphene, researchers in Switzerland have been able to demonstrate a phenomenon predicted by a Russian physicist more than 50 years ago. The observation of the Lifshitz transition, which describes a change in topology, depended on the creation of a double-layer graphene sample of unprecedented quality.

Nuclear spins control electrical currents

September 23, 2014 2:47 pm | by Katherine Kornei | News | Comments

An international team of physicists has shown that information stored in the nuclear spins of hydrogen isotopes in an organic light-emitting diode (LED) or organic LED can be read out by measuring the electrical current through the device. Unlike previous schemes that only work at ultracold temperatures, this is the first to operate at room temperature, and could be used to create extremely dense and highly energy-efficient memory devices.

Engineers show light can play seesaw at the nanoscale

September 23, 2014 9:41 am | News | Comments

Univ. of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The tiny device is just .7 micrometers by 50 micrometers and works almost like a seesaw. On each side of the “seesaw benches,” researchers etched an array of holes, called photonic crystal cavities. These cavities capture photons that streamed from a nearby source.

Sandia magnetized fusion technique produces significant results

September 23, 2014 9:34 am | News | Comments

Inertial confinement fusion creates nanosecond bursts of neutrons, ideal for creating data to plug into supercomputer codes that test the U.S. nuclear stockpile. Down the road, it could be useful as a source of energy. Researchers at Sandia National Laboratories’ Z machine have produced a significant output of fusion neutrons, using a method fully functioning for only little more than a year.

Uncovering the forbidden side of molecules

September 22, 2014 1:45 pm | News | Comments

Researchers in Switzerland have succeeded in observing the “forbidden” infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives for extremely precise measurements of molecular properties and may also contribute to the development of molecular clocks and quantum technology.

First-ever chemical bond established between carbon and a superheavy element

September 19, 2014 11:16 am | News | Comments

Chemical experiments with superheavy elements, which have atomic numbers beyond 104, are extremely challenging because they must be synthesized in a particle accelerator and they decay rapidly. An international team has, for the first time, established a chemical bond between a superheavy element, in this case element 106, seaborgium, and a carbon atom. The experiment opens the door to new investigations of relativity effects.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading