Advertisement
Microscopy
Subscribe to Microscopy

The Lead

Spiky “hedgehog particles” for safer paints, fewer VOC emissions

January 29, 2015 8:28 am | by Gabe Cherry, Univ. of Michigan | News | Comments

A new process that can sprout microscopic spikes on nearly any type of particle may lead to more environmentally friendly paints and a variety of other innovations. Made by a team of Univ. of Michigan engineers, the "hedgehog particles" are named for their bushy appearance under the microscope.

Visualizing interacting electrons in a molecule

January 26, 2015 10:48 am | by Peter Liljeroth, Aalto Univ. | News | Comments

Understanding this electronic effect in organic molecules is crucial for their use in...

New laser could upgrade the images in tomorrow’s technology

January 20, 2015 7:23 am | by Jim Shelton, Yale Univ. | News | Comments

A new semiconductor laser developed at Yale Univ. has the potential to significantly improve the...

Team enlarges brain samples, making them easier to image

January 15, 2015 2:29 pm | by Anne Trafton, MIT News Office | News | Comments

Beginning with the invention of the first microscope in the late 1500s, scientists have been...

View Sample

FREE Email Newsletter

Watching nanoscale assembly live

January 5, 2015 9:57 am | by Max Ryadnov, National Physical Laboratory | News | Comments

Ebola virus, Alzheimer's amyloid fibrils, tissue collagen scaffolds and cellular cytoskeleton are all filamentous structures that spontaneously assemble from individual proteins. Many protein filaments are well studied and are already finding use in regenerative medicine, molecular electronics and diagnostics. However, the very process of their assembly, protein fibrillogenesis, remains largely unrevealed.

A qubit candidate shines brighter

January 2, 2015 8:38 am | by American Institute of Physics | News | Comments

In the race to design the world's first universal quantum computer, a special kind of diamond defect called a nitrogen vacancy (NV) center is playing a big role. NV centers consist of a nitrogen atom and a vacant site that together replace two adjacent carbon atoms in diamond crystal. The defects can record or store quantum information and transmit it in the form of light.

New technique reveals immune cell motion through variety of tissues

December 22, 2014 10:47 am | News | Comments

Neutrophils, a type of white blood cell, are the immune system’s all-terrain vehicles. The cells are recruited to fight infections or injury in any tissue or organ in the body despite differences in the cellular and biochemical composition. Researchers collaborated to devise a new technique for understanding how neutrophils move in these confined spaces.

Advertisement

Sensor could improve one of nano research’s most useful microscopes

December 17, 2014 3:31 pm | by Chad Boutin, NIST | News | Comments

Spotting molecule-sized features may become both easier and more accurate with a sensor developed at NIST. With their new design, NIST scientists may have found a way to sidestep some of the problems in calibrating atomic force microscopes (AFMs). The AFM is one of the main scientific workhorses of the nano age.

Lens-free microscope can detect cancer at the cellular level

December 17, 2014 3:07 pm | by Bill Kisliuk, Univ. of California, Los Angeles | News | Comments

Univ. of California, Los Angeles researchers have developed a lens-free microscope that can be used to detect the presence of cancer or other cell-level abnormalities with the same accuracy as larger and more expensive optical microscopes. The invention could lead to less expensive and more portable technology for performing common examinations of tissue, blood and other biomedical specimens.

Microscopy pencils patterns in polymers at the nanoscale

December 17, 2014 2:50 pm | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.

Cells build “cupboards” to store metals

December 16, 2014 3:06 pm | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Lawrence Livermore National Laboratory researchers in conjunction with collaborators at Univ. of California, Los Angeles have found that some cells build intracellular compartments that allow the cell to store metals and maintain equilibrium. Nearly 40% of all proteins require metal ions such as zinc, copper, manganese or iron for activity.

Baby steps toward molecular robots

December 11, 2014 8:32 am | News | Comments

A walking molecule, so small that it cannot be observed directly with a microscope, has been recorded taking its first nanometer-sized steps. It's the first time that anyone has shown in real time that such a tiny object – termed a "small molecule walker" – has taken a series of steps.

Advertisement

Defects are perfect in laser-induced graphene

December 10, 2014 7:50 am | News | Comments

Researchers at Rice University have created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser. The process works in air at room temperature and eliminates the need for hot furnaces and controlled environments, and it makes graphene that may be suitable for electronics or energy storage.

Technique simultaneously determines nanomaterials’ chemical makeup

December 3, 2014 8:47 am | by Angela Hardin, Argonne National Laboratory | News | Comments

A team of researchers from Argonne National Laboratory and Ohio Univ. have devised a powerful technique that simultaneously resolves the chemical characterization and topography of nanoscale materials down to the height of a single atom. The technique combines synchrotron x-rays (SX) and scanning tunneling microscopy (STM). In experiments, the researchers used SX as a probe and a nanofabricated smart tip of a STM as a detector.

First pictures of baby nanotubes

December 2, 2014 11:18 am | by NIST | News | Comments

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this and other properties are largely dependent on their structure, and their structure is determined when the nanotube is just beginning to form.

Scientists save money with DIY microscope

November 25, 2014 7:35 am | by Brunel Univ. | News | Comments

Expensive tests for measuring everything from sperm motility to cancer diagnosis have just been made cheaper by a graduate student from Brunel Univ. London who hacked his own microscope. Adam Lynch, from the university’s College of Health and Life Sciences, created his own inverted microscope by adapting a cheap instrument he bought online to save himself time and money.

Researchers discern the shapes of high-order Brownian motions

November 17, 2014 7:57 am | by Case Western Reserve Univ. | News | Comments

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions—in this case, the collective macroscopic movement of molecules in microdisk resonators—researchers at Case Western Reserve Univ. report. To do this, they used a record-setting scanning optical interferometry technique.

Advertisement

New form of crystalline order holds promises for thermoelectric applications

November 14, 2014 9:36 am | by Vanderbilt Univ. | News | Comments

Since the 1850s scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt Univ. and Oak Ridge National Laboratory now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Nikon Small World names winners of 40th anniversary competition

October 30, 2014 2:25 pm | News | Comments

Nikon Instruments, Inc. has revealed the winners of the 40th annual Nikon Small World Photomicrography Competition, awarding first prize to veteran competitor Rogelio Moreno of Panama for capturing a rarely seen image of a rotifer’s open mouth interior and heart-shaped corona.

Imaging electrons moving at 80,000 m/sec in a semiconductor

October 29, 2014 12:45 pm | News | Comments

Researchers in Japan have directly observed and recorded electron flow at 80,000 m/sec in a semiconductor. They did so by combining a new laser pulse light source and a photoemission electron microscope to develop an ultra high-speed microscope that enabled visualization of electrons on a 20 nm and 200 femtosec scale.

Cheap and efficient method improves SERS

October 28, 2014 12:07 pm | News | Comments

Researchers with CiQUS in Spain have developed a new method to overcome limitations of surface enhanced Raman spectroscopy (SERS), an ultra-sensitive analytical technique able to detect chemicals in very low concentration. The research results show how to cut production costs of substrates and also tackle the lack of reproducibility usually associated to this technique.

Special microscope captures defects in nanotubes

October 22, 2014 8:16 am | News | Comments

Univ. of Oregon chemists have devised a way to see the internal structures of electronic waves trapped in carbon nanotubes by external electrostatic charges. Their atomic scale observations provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices.

Garnet ceramics ideal for high-energy lithium batteries

October 22, 2014 8:06 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The team used electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Keeping an Eye on Quality

October 16, 2014 2:57 pm | by Olympus | Articles | Comments

A leader in the field of minimally invasive surgery device development operates state-of-the-art R&D and manufacturing facilities—facilities that depend on today’s most advanced quality assurance/quality testing procedures. To ensure all equipment leaving its production facilities meets the highest performance and reliability standards, the company relies on a QA/QC system made possible by industrial microscope and analyzer solutions.

Cheap catalyst gets expensive accessory

October 15, 2014 12:06 pm | News | Comments

Iron catalysts remove oxygen inexpensively, but are susceptible to rust or oxidation in biofuel production. Precious metals that resist corrosion are even less efficient at removing oxygen. But adding just a touch of palladium to the iron produces a catalyst that quickly removes oxygen atoms, easily releases the desired products, and doesn't rust, according to scientists at Pacific Northwest National Laboratory and Washington State Univ.

Solid nanoparticles can deform like a liquid

October 13, 2014 8:24 am | by David L. Chandler, MIT News Office | News | Comments

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration. The research team behind the finding says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

Of bio-hairpins and polymer-spaghetti

October 9, 2014 11:02 am | News | Comments

When a sturdy material becomes soft and spongy, one usually suspects damage. But this is not always the case, especially in biological cells. By looking at microscopic biopolymer networks, researchers in Germany revealed that such materials soften by undergoing a transition from an entangled spaghetti of filaments to aligned layers of bow-shaped filaments that slide past each other. This finding may explain how other filaments flow.

Three win Nobel for super-zoom microscopes

October 8, 2014 9:20 am | by Karl Ritter and Malin Rising, Associated Press | News | Comments

Two Americans and a German scientist won the 2014 Nobel Prize in chemistry Wednesday for finding ways to make microscopes more powerful than previously thought possible. Working independently of each other, U.S. researchers Eric Betzig and William Moerner and Stefan Hell of Germany shattered previous limits on the resolution of optical microscopes by using molecules that glow on command to peer inside tiny components of life.

NIH awards UC Berkeley $7.2 million to advance brain initiative

October 2, 2014 8:28 am | by Robert Sanders, UC Berkeley | News | Comments

The National Institutes of Health this week announced its first research grants through President Barack Obama’s BRAIN Initiative, including three awards to the Univ. of California, Berkeley, totaling nearly $7.2 million over three years. The projects are among 58 funded in this initial wave of NIH grants, involving 100 researchers and a total of $46 million in fiscal year 2014 dollars alone.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading