Advertisement
Microscopy
Subscribe to Microscopy

The Lead

Scientists save money with DIY microscope

November 25, 2014 7:35 am | by Brunel Univ. | News | Comments

Expensive tests for measuring everything from sperm motility to cancer diagnosis have just been made cheaper by a graduate student from Brunel Univ. London who hacked his own microscope. Adam Lynch, from the university’s College of Health and Life Sciences, created his own inverted microscope by adapting a cheap instrument he bought online to save himself time and money.

Researchers discern the shapes of high-order Brownian motions

November 17, 2014 7:57 am | by Case Western Reserve Univ. | News | Comments

For the first time, scientists have vividly mapped the shapes and textures of high-order modes...

New form of crystalline order holds promises for thermoelectric applications

November 14, 2014 9:36 am | by Vanderbilt Univ. | News | Comments

Since the 1850s scientists have known that crystalline materials are organized into fourteen...

Nikon Small World names winners of 40th anniversary competition

October 30, 2014 2:25 pm | News | Comments

Nikon Instruments, Inc. has revealed the winners of the 40th annual Nikon Small World...

View Sample

FREE Email Newsletter

Imaging electrons moving at 80,000 m/sec in a semiconductor

October 29, 2014 12:45 pm | News | Comments

Researchers in Japan have directly observed and recorded electron flow at 80,000 m/sec in a semiconductor. They did so by combining a new laser pulse light source and a photoemission electron microscope to develop an ultra high-speed microscope that enabled visualization of electrons on a 20 nm and 200 femtosec scale.

Cheap and efficient method improves SERS

October 28, 2014 12:07 pm | News | Comments

Researchers with CiQUS in Spain have developed a new method to overcome limitations of surface enhanced Raman spectroscopy (SERS), an ultra-sensitive analytical technique able to detect chemicals in very low concentration. The research results show how to cut production costs of substrates and also tackle the lack of reproducibility usually associated to this technique.

Special microscope captures defects in nanotubes

October 22, 2014 8:16 am | News | Comments

Univ. of Oregon chemists have devised a way to see the internal structures of electronic waves trapped in carbon nanotubes by external electrostatic charges. Their atomic scale observations provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices.

Advertisement

Garnet ceramics ideal for high-energy lithium batteries

October 22, 2014 8:06 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory have discovered exceptional properties in a garnet material that could enable development of higher-energy battery designs. The team used electron microscopy to take an atomic-level look at a cubic garnet material called LLZO. The researchers found the material to be highly stable in a range of aqueous environments, making the compound a promising component in new battery configurations.

Keeping an Eye on Quality

October 16, 2014 2:57 pm | by Olympus | Articles | Comments

A leader in the field of minimally invasive surgery device development operates state-of-the-art R&D and manufacturing facilities—facilities that depend on today’s most advanced quality assurance/quality testing procedures. To ensure all equipment leaving its production facilities meets the highest performance and reliability standards, the company relies on a QA/QC system made possible by industrial microscope and analyzer solutions.

Cheap catalyst gets expensive accessory

October 15, 2014 12:06 pm | News | Comments

Iron catalysts remove oxygen inexpensively, but are susceptible to rust or oxidation in biofuel production. Precious metals that resist corrosion are even less efficient at removing oxygen. But adding just a touch of palladium to the iron produces a catalyst that quickly removes oxygen atoms, easily releases the desired products, and doesn't rust, according to scientists at Pacific Northwest National Laboratory and Washington State Univ.

Solid nanoparticles can deform like a liquid

October 13, 2014 8:24 am | by David L. Chandler, MIT News Office | News | Comments

A surprising phenomenon has been found in metal nanoparticles: They appear, from the outside, to be liquid droplets, wobbling and readily changing shape, while their interiors retain a perfectly stable crystal configuration. The research team behind the finding says the work could have important implications for the design of components in nanotechnology, such as metal contacts for molecular electronic circuits.

Of bio-hairpins and polymer-spaghetti

October 9, 2014 11:02 am | News | Comments

When a sturdy material becomes soft and spongy, one usually suspects damage. But this is not always the case, especially in biological cells. By looking at microscopic biopolymer networks, researchers in Germany revealed that such materials soften by undergoing a transition from an entangled spaghetti of filaments to aligned layers of bow-shaped filaments that slide past each other. This finding may explain how other filaments flow.

Advertisement

Three win Nobel for super-zoom microscopes

October 8, 2014 9:20 am | by Karl Ritter and Malin Rising, Associated Press | News | Comments

Two Americans and a German scientist won the 2014 Nobel Prize in chemistry Wednesday for finding ways to make microscopes more powerful than previously thought possible. Working independently of each other, U.S. researchers Eric Betzig and William Moerner and Stefan Hell of Germany shattered previous limits on the resolution of optical microscopes by using molecules that glow on command to peer inside tiny components of life.

NIH awards UC Berkeley $7.2 million to advance brain initiative

October 2, 2014 8:28 am | by Robert Sanders, UC Berkeley | News | Comments

The National Institutes of Health this week announced its first research grants through President Barack Obama’s BRAIN Initiative, including three awards to the Univ. of California, Berkeley, totaling nearly $7.2 million over three years. The projects are among 58 funded in this initial wave of NIH grants, involving 100 researchers and a total of $46 million in fiscal year 2014 dollars alone.

Stressed out: Research sheds new light on why rechargeable batteries fail

October 2, 2014 8:18 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Drawn relentlessly by their electrical charges, lithium ions in a battery surge from anode to cathode and back again. Yet, no one really understands what goes on at the atomic scale as lithium ion batteries are used and recharged. Using transmission electron microscopy, researchers are now glimpsing what can happen to anodes as lithium ions work their way into them. The “atomic shuffling” these ions perform leads to rapid anode failure.

Join the best of the best in innovation

October 1, 2014 8:57 am | by Lindsay Hock, Managing Editor | News | Comments

The 52nd annual R&D 100 Awards event will present a series of panel discussions featuring today’s top technological minds revealing their secrets for innovation. Draw inspiration from these leading experts as they discuss technology-driven strategies for transforming your ideas into excellence.

Scientists improve microscopic batteries with homebuilt imaging analysis

September 29, 2014 12:26 pm | News | Comments

In a rare case of having their cake and eating it too, scientists from NIST and other institutions have developed a toolset that allows them to explore the complex interior of tiny, multi-layered batteries they devised. It provides insight into the batteries’ performance without destroying them, which results in both a useful probe for scientists and a potential power source for micromachines.

Advertisement

Multi-spectra “glasses” aid studies of light elements with SEMs

September 26, 2014 11:16 am | News | Comments

Scanning electron microscopes can determine chemical compositions with the help of energy dispersive spectrometers. However, lighter elements like carbon emit secondary fluorescence in an energy range insufficiently resolved by these instruments. Physicists have developed a potential solution to this problem by adding reflection zone plate optics to a specialized spectrometer that delivers high resolution from 50 to 1,120 eV.

2-D materials’ crystalline defects key to new properties

September 24, 2014 11:13 am | News | Comments

using an aberration-corrected scanning transmission electron microscope, researchers have recently understood how defects in 2-D crystals such as tungsten disulphide can move, or dislocate, to other locations in the material. Understanding how atoms "glide" and "climb" on the surface of 2-D crystals may pave the way for researchers to develop materials with unusual or unique characteristics.

Want to print your own cell phone microscope for pennies?

September 16, 2014 8:01 am | by Susan Bauer, PNNL | Videos | Comments

At one o'clock in the morning, layers of warm plastic are deposited on the platform of the 3-D printer that sits on scientist Rebecca Erikson's desk. A small plastic housing, designed to fit over the end of a cell phone, begins to take shape. Pulling it from the printer, Erikson quickly pops in a tiny glass bead and checks the magnification.

Moving silicon atoms in graphene with atomic precision

September 15, 2014 10:34 am | Videos | Comments

In recent years, it has become possible to see directly individual atoms using electron microscopy, especially in graphene. Using electron microscopy and computer simulations, an international team has recently shown how an electron beam can move silicon atoms through the graphene lattice without causing damage.

The shadow of a disease

September 15, 2014 8:45 am | News | Comments

Researchers have developed an optical method that makes individual proteins, such as the proteins characteristic of some cancers, visible. Other methods that achieve this only work if the target biomolecules have first been labeled with fluorescent tags, but this approach is very difficult. By contrast, the new method allows scientists to directly detect the scattered light of individual proteins via their shadows.

Magnetism intensified by defects

September 12, 2014 1:53 pm | News | Comments

As integrated circuits become increasingly miniaturized and the sizes of magnetic components approach nanoscale dimensions, magnetic properties can disappear. Scientists in Japan, with the help of a form of electron microscopy called split-illumination electron holography, have gained important insights into the development of stable, strong nanomagnets by discovering magnetism-amplifying atomic disorder in iron-aluminum alloys.

Advanced Light Source sets microscopy record

September 11, 2014 8:11 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A record-setting x-ray microscopy experiment may have ushered in a new era for nanoscale imaging. Working at Lawrence Berkeley National Laboratory (Berkeley Lab), a collaboration of researchers used low energy or “soft” x-rays to image structures only 5 nm in size. This resolution, obtained at Berkeley Lab’s Advanced Light Source, is the highest ever achieved with x-ray microscopy.

Fingerprinting cell metabolism points toward study of obesity, diabetes

September 9, 2014 7:38 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to use a new imaging platform to map lipid metabolism in living cells, discovering specifically where cholesterol is stored and pointing toward further studies in obesity, diabetes and longevity. The imaging approach makes it possible to not only quantify the storage of cholesterol, but also the "desaturation" and oxidation of lipids, which may reduce the ability of cells to use insulin.

Seeing clearly through a liquid

September 8, 2014 8:33 am | News | Comments

Accurately examining materials in liquids using electron microscopy is a difficult task for scientists, as electron beams perturb the sample and induce artifacts. Scientists at Pacific Northwest National Laboratory and the Univ. of California, Davis have demonstrated that in in situ liquid experiments, the choice of electron beam energy has a strong effect that goes far beyond merely increasing the concentration of reducing radicals.

Engineers advance understanding of graphene’s friction properties

September 8, 2014 8:09 am | News | Comments

On the macroscale, adding fluorine atoms to carbon-based materials makes for water-repellant, non-stick surfaces, such as Teflon. However, on the nanoscale, adding fluorine to graphene vastly increased the friction experienced when sliding against the material. Through a combination of physical experiments and atomistic simulations, a Univ. of Pennsylvania research team has discovered the mechanism behind this surprising finding.

Making Light Work of Industrial Workflows

September 5, 2014 9:31 am | by Markus Fabich, Product and Application Specialist for Materials Science Microscopy at Olympus Europa SE & Co. KG | Articles | Comments

Quality assurance is essential in industrial workflows and the Dortmund-based SGS Institut Fresenius GmbHs, a subsidiary of the SGS Group, undertakes a diverse range of quality assurance tasks in the automotive, aerospace and medical technology sectors. Given that material quality is essential in these sectors, any technologies that can enhance the accuracy, efficiency and ease of material inspection and analysis are welcomed.

The birth of a mineral

September 5, 2014 8:12 am | by Mary Beckman, Pacific Northwest National Laboratory | Videos | Comments

One of the most important molecules on Earth, calcium carbonate crystallizes into chalk, shells and minerals the world over. In a study led by Pacific Northwest National Laboratory, researchers used a powerful microscope that allows them to see the birth of crystals in real time, giving them a peek at how different calcium carbonate crystals form, they report in Science.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading