Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Nanoparticle production method could lead to better lights, lenses, solar cells

June 17, 2014 4:02 pm | News | Comments

Titanium dioxide nanoparticles show great promise as optical encapsulants or fillers for tunable refractive index coatings. However, they've been largely shunned because they’ve been difficult and expensive to make. Scientists at Sandia National Laboratories have now come up with an inexpensive way to synthesize properly sized titanium dioxide nanoparticles and is seeking partners who can demonstrate the process at industrial scale.

Moscow researcher predicts new state of matter

June 17, 2014 11:25 am | News | Comments

A physicist in Russia, Alexander Rozhkov, has presented theoretical calculations which indicate the possible existence of fermionic matter in a previously unknown state. It is defined as a 1-D liquid, which cannot be described within the framework of existing models. According to Rozhkov, the 1-D liquid state of matter is not necessarily one that can be observed with the naked eye on a macroscopic scale.

Superconducting secrets solved after 30 years

June 16, 2014 9:14 am | News | Comments

A breakthrough has been made in identifying the origin of superconductivity in high-temperature superconductors, which has puzzled researchers for the past three decades. Researchers in the U.K. have found that ripples of electrons, known as charge density waves or charge order, create twisted ‘pockets’ of electrons in these materials, from which superconductivity emerges.

Advertisement

Nanoscale composites improve MRI

June 16, 2014 7:31 am | by Mike Williams, Rice Univ. | News | Comments

Submicroscopic particles that contain even smaller particles of iron oxide could make magnetic resonance imaging (MRI) a far more powerful tool to detect and fight disease. Scientists at Rice Uni. led an international team of researchers in creating composite particles that can be injected into patients and guided by magnetic fields.

Nano-imaging probes molecular disorder

June 13, 2014 10:59 am | News | Comments

In semiconductor-based components, high mobility of charge-carrying particles is important. In organic materials, however, it is uncertain to what degree the molecular order within the thin films affects the mobility and transport of charge carriers. Using a new imaging method, researchers have shown that thin-film organic semiconductors contain regions of structural disorder that could inhibit the transport of charge and limit efficiency.

Scientists attract water to achieve a clearer view

June 13, 2014 10:47 am | News | Comments

Normally, keeping glass clean and clear depends on repelling or wiping away water droplets. Or a coating attached to help do this. But researchers in Singapore have discovered that doing just the opposite, collecting water, is the key to keeping a surface clear. Their superhydrophilic coating attracts water to create a uniform, thin, transparent layer.

Manipulating and detecting ultra-high-frequency sound waves

June 12, 2014 7:59 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

An advance has been achieved towards next-generation ultrasonic imaging with potentially 1,000 times higher resolution than today’s medical ultrasounds. Researchers with Lawrence Berkeley National Laboratory have demonstrated a technique for producing, detecting and controlling ultra-high-frequency sound waves at the nanometer scale.

Nanotube forests drink water from arid air

June 12, 2014 7:27 am | by Mike Williams, Rice Univ. | News | Comments

If you don’t want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy. New research by scientists at Rice Univ. demonstrated that forests of carbon nanotubes can be made to harvest water molecules from arid desert air and store them for future use.

Advertisement

The inflatable concrete dome

June 11, 2014 3:51 pm | News | Comments

When concrete shells are constructed, they usually have to be supported by elaborate timber structures. This is one reason why such structures are now rarely built. In Austria, engineers have developed a new construction method that does not require any solid supporting structure at all. Instead, an air cushion is inflated below a concrete slab, bending the concrete and quickly forming a self-supporting shell.

Researchers in China develop cheaper method for making superlyophobic surfaces

June 11, 2014 11:41 am | News | Comments

Superlyophobic surfaces are simultaneously repellant for almost any liquid and exhibit high contact angles and low flow resist. But the demanding and usually expensive fabrication remains a bottleneck for further development. Researchers in Shenzhen, China, however, have now formulated a facile and inexpensive microfabrication method that uses polymers to help transfer the superlyophobic structures to curable materials.

A new solution for storing hydrogen fuel

June 11, 2014 8:36 am | News | Comments

Turning the “hydrogen economy” concept into a reality, even on a small scale, has been a bumpy road, but scientists are developing a novel way to store hydrogen to smooth out the long-awaited transition away from fossil fuels. Their report on a new solid, stable material that can pack in a large amount of hydrogen that can be used as a fuel appears in Chemistry of Materials.

DNA-lined nanoparticles form switchable thin films on liquid surface

June 11, 2014 8:22 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Scientists seeking ways to engineer the assembly of tiny particles measuring just billionths of a meter have achieved a new first: the formation of a single layer of nanoparticles on a liquid surface where the properties of the layer can be easily switched. Understanding the assembly of such nanostructured thin films could lead to the design of new kinds of membranes with a variable mechanical response for a wide range of applications.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Advertisement

NIST: The clumping density of many things seems to be a standard

June 11, 2014 7:37 am | News | Comments

Particles of soot floating through the air and comets hurtling through space have at least one thing in common: 0.36. That, reports a research group at NIST, is the measure of how dense they will get under normal conditions, and it’s a value that seems to be constant for similar aggregates across an impressively wide size range from nanometers to tens of meters. NIST hopes the results will aid climate researchers.

Technology using microwave heating may impact electronics manufacture

June 10, 2014 3:12 pm | News | Comments

Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating. This is essentially the same force that heats up leftover food with such efficiency, but instead of warming up yesterday’s pizza, this concept may change the production of cell phones and televisions or improve solar energy systems.

Charging portable electronics in 10 minutes

June 10, 2014 3:09 pm | by Sean Nealon, UC Riverside | News | Comments

Researchers at the University of California, Riverside Bourns College of Engineering have developed a 3-D, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes. It also increases cell capacity and reduces size and weight by 40%.

Research develops “onion” vesicles for drug delivery

June 10, 2014 11:22 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

One of the defining features of cells is their membranes. Each cell’s repository of DNA and protein-making machinery must be kept stable and secure from invaders and toxins. Scientists have attempted to replicate these properties, but, despite decades of research, even the most basic membrane structures, known as vesicles, still face many problems when made in the laboratory.

Researchers create nanoparticle thin films that self-assemble in one minute

June 10, 2014 7:51 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

The days of self-assembling nanoparticles taking hours to form a film over a microscopic-sized wafer are over. Researchers with Lawrence Berkeley National Laboratory have devised a technique whereby self-assembling nanoparticle arrays can form a highly ordered thin film over macroscopic distances in one minute.

Auto industry gets serious about lighter materials

June 9, 2014 1:20 pm | by Dee-ann Durbin - AP Auto Writer - Associated Press | News | Comments

Roofs made of carbon fiber. Plastic windshields. Bumpers fashioned out of aluminum foam. What sounds like a science experiment could be your next car. While hybrids and electrics may grab the headlines, the real frontier in fuel economy is the switch to lighter materials. Automakers have been experimenting for decades with lightweighting, but the effort is gaining urgency with the adoption of tougher gas mileage standards.

New nanoparticles bring cheaper, lighter solar cells outdoors

June 9, 2014 11:37 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | News | Comments

Think those flat, glassy solar panels on your neighbor’s roof are the pinnacle of solar technology? Think again. Researchers at Univ. of Toronto have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

Evolution of a bimetallic nanocatalyst

June 9, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multinational laboratory collaboration has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

Seeing how a lithium-ion battery works

June 9, 2014 7:44 am | by David L. Chandler, MIT News Office | News | Comments

New observations by researchers at Massachusetts Institute of Technology have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

Shatterproof polymer screens to help save smartphones

June 6, 2014 10:57 am | News | Comments

Polymer scientists in Ohio have demonstrated how a transparent layer of electrodes on a polymer surface could be extraordinarily tough and flexible, withstanding repeated scotch tape peeling and bending tests. According to its developers, the new material could replace conventional indium tin oxide coatings currently used for touchscreens.

Opening a wide window on the nano-world of surface catalysis

June 6, 2014 10:20 am | by Steven Powell, Univ. of South Carolina | News | Comments

Surface catalysts are notoriously difficult to study mechanistically, but scientists at two universities have recently shown how to get real-time reaction information from silver nanocatalysts that have long frustrated attempts to describe their kinetic behavior in detail. The key to the team's success was bridging a size gap that had represented a wide chasm to researchers in the past.

All-natural mixture yields promising fire retardant

June 6, 2014 9:29 am | News | Comments

A dash of clay, a dab of fiber from crab shells, and a dollop of DNA: This strange group of materials are actually the ingredients of promising green fire retardants invented by researchers at NIST. Applied to polyurethane foam, the bio-based coatings greatly reduced the flammability of the common furniture padding after it was exposed to an open flame.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading