Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Defects are perfect in laser-induced graphene

December 10, 2014 7:50 am | News | Comments

Researchers at Rice University have created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser. The process works in air at room temperature and eliminates the need for hot furnaces and controlled environments, and it makes graphene that may be suitable for electronics or energy storage.

Composite materials can be designed in a supercomputer 'virtual lab'

December 9, 2014 12:45 pm | News | Comments

Scientists have shown how advanced computer simulations can be used to design new composite materials. Nanocomposites, which are widely used in industry, are revolutionary materials in which microscopic particles are dispersed through plastics. 

Germanium comes home to Purdue for semiconductor milestone

December 8, 2014 4:26 pm | by Emil Venere, Purdue Univ. | News | Comments

A laboratory at Purdue Univ. provided a critical part of the world's first transistor in 1947—the purified germanium semiconductor—and now researchers here are on the forefront of a new germanium milestone. The team has created the first modern germanium circuit—a complementary metal–oxide–semiconductor (CMOS) device—using germanium as the semiconductor instead of silicon.

Advertisement

New semiconductor could change face of consumer electronics

December 8, 2014 9:54 am | by David Stauth, Oregon State Univ. | News | Comments

Materials first developed at Oregon State Univ. more than a decade ago with an eye toward making “transparent” transistors may be about to shake up the field of consumer electronics; and the first uses are not even based on the transparent capability of the materials. In the continued work and in collaboration with private industry, certain transparent transistor materials are now gaining some of their first commercial applications.

Rattled atoms mimic high-temperature superconductivity

December 8, 2014 9:29 am | by SLAC Office of Communications | News | Comments

An experiment at SLAC National Accelerator Laboratory provided the first fleeting glimpse of the atomic structure of a material as it entered a state resembling room-temperature superconductivity—a long-sought phenomenon in which materials might conduct electricity with 100% efficiency under everyday conditions.

Uniform nanowire arrays for science, manufacturing

December 8, 2014 8:36 am | by Kris Bertness, NIST | News | Comments

Defect-free nanowires with diameters in the range of 100 nm hold significant promise for numerous in-demand applications. That promise can't be realized, however, unless the wires can be fabricated in large uniform arrays using methods compatible with high-volume manufacture. To date, that has not been possible for arbitrary spacings in ultra-high vacuum growth.

Technique offers spray-on solar power

December 8, 2014 8:18 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | Videos | Comments

Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap. A Univ. of Toronto team has invented a new way to spray solar cells onto flexible surfaces using miniscule light-sensitive materials known as colloidal quantum dots (CQDs)—a major step toward making spray-on solar cells easy and cheap to manufacture.

Nanoparticle allows low-cost creation of 3-D nanostructures

December 8, 2014 7:51 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new lithography technique that uses nanoscale spheres to create 3-D structures with biomedical, electronic and photonic applications. The new technique is significantly less expensive than conventional methods and does not rely on stacking 2-D patterns to create 3-D structures.

Advertisement

Unusual electronic state found in new class of superconductors

December 8, 2014 7:41 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

A team of scientists has discovered an unusual form of electronic order in a new family of unconventional superconductors. The findingestablishes an unexpected connection between this new group of titanium-oxypnictide superconductors and the more familiar cuprates and iron-pnictides, providing scientists with a whole new family of materials from which they can gain deeper insights into the mysteries of high-temperature superconductivity.

Atomic “mismatch” creates nano “dumbbells”

December 5, 2014 9:55 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Like snowflakes, nanoparticles come in a wide variety of shapes and sizes. The geometry of a nanoparticle is often as influential as its chemical makeup in determining how it behaves, from its catalytic properties to its potential as a semiconductor component. Thanks to a new study, researchers are closer to understanding the process by which nanoparticles made of more than one material, called heterostructured nanoparticles, form.

Nanoparticle network could bring fast-charging batteries

December 4, 2014 7:46 am | by Emil Venere, Purdue Univ. | News | Comments

A new electrode design for lithium-ion batteries has been shown to potentially reduce the charging time from hours to minutes by replacing the conventional graphite electrode with a network of tin-oxide nanoparticles. Batteries have two electrodes, called an anode and a cathode. The anodes in most of today's lithium-ion batteries are made of graphite.

Buckyballs enhance carbon capture

December 4, 2014 7:37 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have discovered an environmentally friendly carbon-capture method that could be equally adept at drawing carbon dioxide emissions from industrial flue gases and natural gas wells. The Rice laboratory of chemist Andrew Barron revealed in a proof-of-concept study that amine-rich compounds are highly effective at capturing the greenhouse gas when combined with carbon-60 molecules.

Technique simultaneously determines nanomaterials’ chemical makeup

December 3, 2014 8:47 am | by Angela Hardin, Argonne National Laboratory | News | Comments

A team of researchers from Argonne National Laboratory and Ohio Univ. have devised a powerful technique that simultaneously resolves the chemical characterization and topography of nanoscale materials down to the height of a single atom. The technique combines synchrotron x-rays (SX) and scanning tunneling microscopy (STM). In experiments, the researchers used SX as a probe and a nanofabricated smart tip of a STM as a detector.

Advertisement

Researchers develop inexpensive hydrolysable polymer

December 2, 2014 4:50 pm | by Rick Kubetz, Engineering Communications Office | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have figured out how to reverse the characteristics of a key bonding material—polyurea—providing an inexpensive alternative for a broad number of applications, such as drug delivery, tissue engineering and packaging.

Lengthening the life of high-capacity silicon electrodes in rechargeable lithium batteries

December 2, 2014 4:14 pm | by Mary Beckman, Pacific Northwest National Laboratory | News | Comments

A new study will help researchers create longer-lasting, higher-capacity lithium rechargeable batteries, which are commonly used in consumer electronics. In a study published in ACS Nano, researchers showed how a coating that makes high-capacity silicon electrodes more durable could lead to a replacement for lower-capacity graphite electrodes.

Chemists fabricate novel rewritable paper

December 2, 2014 12:44 pm | by Iqbal Pittalwala, Univ. of California, Riverside | News | Comments

First developed in China in about the year A.D. 150, paper has many uses, the most common being for writing and printing upon. Indeed, the development and spread of civilization owes much to paper’s use as writing material. According to some surveys, 90% of all information in businesses today is retained on paper, even though the bulk of this printed paper is discarded after just one-time use.

First pictures of baby nanotubes

December 2, 2014 11:18 am | by NIST | News | Comments

Single-walled carbon nanotubes are loaded with desirable properties. In particular, the ability to conduct electricity at high rates of speed makes them attractive for use as nanoscale transistors. But this and other properties are largely dependent on their structure, and their structure is determined when the nanotube is just beginning to form.

Nutrition, safety key to consumer acceptance of nanotech

December 2, 2014 10:08 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

New research from North Carolina State Univ. and the Univ. of Minnesota shows the majority of consumers will accept the presence of nanotechnology or genetic modification (GM) technology in foods—but only if the technology enhances the nutrition or improves the safety of the food. The researchers conducted a nationally representative survey of 1,117 U.S. consumers.

Research shows way to design digital metamaterials

December 1, 2014 2:39 pm | by Evan Lerner, Univ. of Pennsylvania | Videos | Comments

Metamaterials, precisely designed composite materials that have properties not found in natural ones, could be used to make light-bending invisibility cloaks, flat lenses and other otherwise impossible devices. Figuring out the necessary composition and internal structure to create these unusual effects is a challenge but new research from the Univ. of Pennsylvania presents a way of simplifying things.

“Superomniphobic” texture capable of repelling all liquids

December 1, 2014 10:45 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

A pair of researchers from the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science has created the first surface texture that can repel all liquids, no matter what material the surface is made of. Because its design relies only on the physical attributes of the texture, the texture could have industrial or biomedical applications.

High-tech mirror to beam heat away from buildings into space

December 1, 2014 10:24 am | by Chris Cesare, Stanford Univ. | News | Comments

Stanford Univ. engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space. The heart of the invention is an ultra-thin, multi-layered material that deals with light, both invisible and visible, in a new way.

New technique could harvest more of the sun’s energy

December 1, 2014 8:32 am | by Jessica Stoller-Conrad, Caltech | News | Comments

As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped. A new technology epresents a first step toward harnessing that lost energy.

A golden approach to low-cost fuel, chemical production

December 1, 2014 7:59 am | by Kim Thurler, Tufts Univ. | News | Comments

New catalysts designed and investigated by Tufts Univ. have the potential to greatly reduce processing costs in future fuels, such as hydrogen. The catalysts are composed of a unique structure of single gold atoms bound by oxygen to several sodium or potassium atoms and supported on non-reactive silica materials.

Microbullet hits confirm graphene’s strength

December 1, 2014 7:52 am | by Mike Williams, Rice Univ. | Videos | Comments

Graphene’s great strength appears to be determined by how well it stretches before it breaks, according to Rice Univ. scientists who tested the material’s properties by peppering it with microbullets. The 2-D carbon honeycomb discovered a decade ago is thought to be much stronger than steel. But the scientists didn’t need even a pound of graphene to prove the material is on average 10 times better than steel at dissipating kinetic energy.

Protons fuel graphene prospects

November 26, 2014 9:11 am | by Univ. of Manchester | News | Comments

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, Univ. of Manchester researchers have found. Published in Nature, the discovery could revolutionize fuel cells and other hydrogen-based technologies as they require a barrier that only allow protons to pass through.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading