Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Sub-micrometer carbon spheres reduce engine friction as oil additive

March 5, 2015 8:31 am | by Emil Venere, Purdue Univ. | News | Comments

Tiny, perfectly smooth carbon spheres added to motor oil have been shown to reduce friction and wear typically seen in engines by as much as 25%, suggesting a similar enhancement in fuel economy. The researchers also have shown how to potentially mass-produce the spheres, making them hundreds of times faster than previously possible using ultrasound to speed chemical reactions in manufacturing.

Energy-generating cloth could replace batteries in wearable devices

March 4, 2015 10:25 am | by American Chemical Society | News | Comments

From light-up shoes to smart watches, wearable electronics are gaining traction among consumers, but these gadgets’ versatility is still held back by the stiff, short-lived batteries that are required. These limitations, however, could soon be overcome.

Material captures carbon dioxide with high capacity

March 4, 2015 8:36 am | by Amanda Bradford, New Mexico State Univ. | News | Comments

A new provisionally patented technology from a New Mexico State Univ. researcher could revolutionize carbon dioxide capture and have a significant impact on reducing pollution worldwide. Through research on zeolitic imidazolate frameworks, or ZIFs, the researcher synthesized a new subclass of ZIF that incorporates a ring carbonyl group in its organic structure.

Advertisement

New material to produce clean energy

March 3, 2015 3:36 pm | by Jeannie Kever, Univ. of Houston | News | Comments

Researchers at the Univ. of Houston have created a new thermoelectric material, intended to generate electric power from waste heat with greater efficiency and higher output power than currently available materials. The material, germanium-doped magnesium stannide, has a peak power factor of 55, with a figure of merit of 1.4.

Why seashells’ mineral forms differently in seawater

March 3, 2015 3:16 pm | by David L. Chandler, MIT News Office | News | Comments

For almost a century, scientists have been puzzled by a process that is crucial to much of the life in Earth’s oceans: Why does calcium carbonate, the tough material of seashells and corals, sometimes take the form of calcite, and at other times form a chemically identical form of the mineral, called aragonite, that is more soluble—and therefore more vulnerable to ocean acidification?

Black phosphorous: A new wonder material for improving optical communication

March 3, 2015 9:18 am | by Lacey Nygard, Univ. of Minnesota | News | Comments

Phosphorus, a highly reactive element commonly found in match heads, tracer bullets and fertilizers, can be turned into a stable crystalline form known as black phosphorus. In a new study, researchers from the Univ. of Minnesota used an ultra-thin black phosphorus film, only 20 layers of atoms, to demonstrate high-speed data communication on nanoscale optical circuits.

Glass coating for improved battery performance

March 3, 2015 8:57 am | by Sean Nealon, Univ. of California, Riverside | News | Comments

Lithium-sulfur batteries have been a hot topic in battery research because of their ability to produce up to 10 times more energy than conventional batteries, which means they hold great promise for applications in energy-demanding electric vehicles. However, there have been fundamental road blocks to commercializing these sulfur batteries.

Analysis shows ion slowdown in fuel cell material

March 2, 2015 11:01 am | by David L. Chandler, MIT News Office | News | Comments

Dislocations in oxides such as cerium dioxide, a solid electrolyte for fuel cells, turn out to have a property that is the opposite of what researchers had expected, according to a new analysis. Researchers had thought that a certain kind of strain would speed the transport of oxygen ions through the material, potentially leading to the much faster diffusion that is necessary in high-performance solid-oxide fuel cells.

Advertisement

How to best harness solar power

March 2, 2015 10:48 am | by Dawn Fuller, Univ. of Cincinnati | News | Comments

A research partnership is reporting advances on how to make solar cells stronger, lighter, more flexible and less expensive when compared with the current silicon or germanium technology on the market. The researchers discovered how a blend of conjugated polymers resulted in structural and electronic changes that increased efficiency three-fold, by incorporating graphene in the active layer of the carbon-based materials.

Aerogel catalyst shows promise for fuel cells

March 2, 2015 7:54 am | by Mike Williams, Rice Univ. | News | Comments

Graphene nanoribbons formed into a 3-D aerogel and enhanced with boron and nitrogen are excellent catalysts for fuel cells, even in comparison to platinum, according to Rice Univ. researchers. A team led by materials scientist Pulickel Ajayan and chemist James Tour made metal-free aerogels from graphene nanoribbons and various levels of boron and nitrogen to test their electrochemical properties.

Moving molecule writes letters

February 27, 2015 11:55 am | by Andreas Battenberg, TUM | News | Comments

On the search for high-performance materials for applications such as gas storage, thermal insulators or dynamic nanosystems it’s essential to understand the thermal behavior of matter down to the molecular level. Classical thermodynamics average over time and over a large number of molecules. Within a 3-D space single molecules can adopt an almost infinite number of states, making the assessment of individual species nearly impossible.

Electrochemical “fingers” unlock battery’s inner potential

February 27, 2015 8:18 am | by Justin Eure, Brookhaven National Laboratory | Videos | Comments

Lithium-ion batteries unleash electricity as electrochemical reactions spread through active materials. Manipulating this complex process and driving the reactions into the energy-rich heart of each part of these active materials is crucial to optimizing the power output and ultimate energy capacity of these batteries. Now, scientists have mapped these atomic-scale reaction pathways and linked them to the battery’s rate of discharge.

Research predicts when, how materials will act

February 26, 2015 12:09 pm | by Kathleen Haughney, Florida State Univ. | News | Comments

In science, it’s commonly known that materials can change in a number of ways when subjected to different temperatures, pressures or other environmental forces.  A material might melt or snap in half. And for engineers, knowing when and why that might happen is crucial information.  Now, a Florida State Univ. researcher has laid out an overarching theory that explains why certain materials act the way they do.

Advertisement

Building blocks of the future defy logic

February 26, 2015 11:58 am | by Cassi Camilleri, Univ. of Malta | News | Comments

Wake up in the morning and stretch; your midsection narrows. Pull on a piece of plastic at separate ends; it becomes thinner. So does a rubber band. One might assume that when a force is applied along an axis, materials will always stretch and become thinner. Wrong.

A mollusk of a different stripe

February 26, 2015 10:59 am | by Jennifer Chu, MIT News Office | Videos | Comments

The blue-rayed limpet is a tiny mollusk that lives in kelp beds along the coasts of Norway, Iceland, the U.K., Portugal and the Canary Islands. These diminutive organisms might escape notice entirely, if not for a very conspicuous feature: bright blue dotted lines that run in parallel along the length of their translucent shells. Depending on the angle at which light hits, a limpet’s shell can flash brilliantly even in murky water.

New “knobs” can dial in control of materials

February 25, 2015 9:52 am | by Anne Ju, Cornell Univ. | News | Comments

Designing or exploring new materials is all about controlling their properties. In a new study, Cornell Univ. scientists offer insight on how different “knobs” can change material properties in ways that were previously unexplored or misunderstood.

Boosting carbon’s stability for better lithium-air batteries

February 25, 2015 9:15 am | by Ed Hayward, Boston College | News | Comments

To power a car so it can travel hundreds of miles at a time, lithium-ion batteries of the future are going to have to hold more energy without growing too big in size. That's one of the dilemmas confronting efforts to power cars through rechargeable battery technologies. In order to hold enough energy to enable a car trip of 300 to 500 miles before recharging, current lithium-ion batteries become too big or too expensive.

Graphene shows potential as anticancer therapeutic strategy

February 25, 2015 8:11 am | by Jamie Brown, Univ. of Manchester | News | Comments

Univ. of Manchester scientists have used graphene to target and neutralize cancer stem cells while not harming other cells. This new development opens up the possibility of preventing or treating a broad range of cancers, using a non-toxic material.

Ultra-thin nanowires can trap electron “twisters”

February 24, 2015 11:11 am | by Phil Sneiderman, Johns Hopkins Univ. | News | Comments

Superconductor materials are prized for their ability to carry an electric current without resistance, but this valuable trait can be crippled or lost when electrons swirl into tiny tornado-like formations called vortices. These disruptive mini-twisters often form in the presence of magnetic fields, such as those produced by electric motors.

Fibers made by transforming materials

February 20, 2015 8:26 am | by David L. Chandler, MIT News Office | News | Comments

Scientists have known how to draw thin fibers from bulk materials for decades. But a new approach to that old method, developed by researchers at Massachusetts Institute of Technology, could lead to a whole new way of making high-quality fiber-based electronic devices. The idea grew out of a long-term research effort to develop multifunctional fibers that incorporate different materials into a single long functional strand.

New technique developed for making graphene competitor, molybdenum disulphide

February 20, 2015 7:59 am | by Evan Lerner, Univ. of Pennsylvania | News | Comments

Graphene is often touted as a replacement for silicon in electronic devices due to its extremely high conductivity and unbeatable thinness. But graphene isn’t the only 2-D material that could play such a role. Univ. of Pennsylvania researchers have made an advance in manufacturing one such material, molybdenum disulphide.

Researchers develop a cost-effective, efficient rival for platinum

February 18, 2015 10:39 am | by Aalto Univ. | News | Comments

Researchers succeeded in creating an electrocatalyst that is needed for storing electric energy made of carbon and iron. A challenge that comes with the increased use of renewable energy is how to store electric energy. Platinum has traditionally been used as the electrocatalyst in electrolyzers that store electric energy as chemical compounds.

Paper-like material could boost electric vehicle batteries

February 18, 2015 8:58 am | by Sean Nealon, University of California, Riverside | News | Comments

Researchers at the Univ. of California, Riverside have developed a novel paper-like material for lithium-ion batteries. It has the potential to boost by several times the specific energy, or amount of energy that can be delivered per unit weight of the battery. This paper-like material is composed of sponge-like silicon nanofibers more than 100 times thinner than human hair.

Novel crumpling method takes flat graphene from 2-D to 3-D

February 18, 2015 7:54 am | by Rick Kubetz, Univ. of Illinois, Urbana-Champaign | News | Comments

Researchers at the Univ. of Illinois at Urbana-Champaign have developed a unique single-step process to achieve 3-D texturing of graphene and graphite. Using a commercially available thermally activated shape-memory polymer substrate, this 3-D texturing, or "crumpling," allows for increased surface area and opens the doors to expanded capabilities for electronics and biomaterials.

New spin on spintronics

February 17, 2015 11:18 am | by Jason Socrates Bardi, American Institute of Physics | News | Comments

A team of researchers from the Univ. of Michigan and Western Michigan Univ. is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments. Most modern electronic circuitry relies on controlling electronic charge within a circuit, but this control can easily be disrupted in the presence of radiation, interrupting information processing.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading