Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Observing the random diffusion of missing atoms in graphene

May 30, 2014 10:58 am | News | Comments

Imperfections in the regular atomic arrangements in crystals determine many of the properties of a material, and their diffusion is behind many microstructural changes in solids. However, imaging non-repeating atomic arrangements is difficult in conventional materials. Now, researchers in Austria have directly imaged the diffusion of a butterfly-shaped atomic defect in graphene.

The hunt for white aluminium

May 30, 2014 10:29 am | by Katrine Krogh-Jeppesen, DTU | News | Comments

Bang & Olufsen is working with scientists in Denmark to develop a method for creating white aluminium surfaces. This has been exceedingly difficult for manufacturers because the existing technology used to color aluminium cannot be used to produce the color white because the molecules used to create “white” are too big. Rather than use pigments, then, researchers have a way to make it become white during the process.

Smart coating could make oil spill cleanup faster, more efficient

May 30, 2014 9:30 am | News | Comments

In the wake of recent offshore oil spills, and with the growing popularity of “fracking”—in which water is used to release oil and gas from shale—there’s a need for easy, quick ways to separate oil and water. Now, scientists have developed coatings that can do just that. Their report on the materials, which also could stop surfaces from getting foggy and dirty, appears in ACS Applied Materials & Interfaces.

Advertisement

Unexpected water explains surface chemistry of nanocrystals

May 30, 2014 8:35 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

A team at Lawrence Berkeley National Laboratory found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how they achieve an overall balance of positive and negative ions.

Hitchhiking nanotubes show how cells stir themselves

May 30, 2014 7:50 am | Videos | Comments

A team of researchers has successfully tracked single molecules inside living cells with carbon nanotubes. Through this new method, the researchers found that cells stir their interiors using the same motor proteins that serve in muscle contraction. The study, which sheds new light on biological transport mechanisms in cells, appears in Science.

New reference to enable better petrochemical catalysts

May 29, 2014 11:51 am | by Fabio Bergamin, ETH Zurich | News | Comments

When crude oil is refined to fuels and chemicals, catalysts such as zeolites. are at work making this process happen. Scientists have recently developed a reference parameter for the performance of this important class of catalysts, which can suffer from production hindrances if reaction side products clog pores or block active sites on the catalyst.

Scientists pinpoint the creeping nanocrystals behind lithium-ion battery degradation

May 29, 2014 8:20 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

Batteries don’t age gracefully. The lithium ions that power portable electronics cause lingering structural damage with each cycle of charge and discharge, making devices from smartphones to tablets tick toward zero faster and faster over time. To stop or slow this steady degradation, scientists must track and tweak the imperfect chemistry of lithium-ion batteries with nanoscale precision.

Microscopy charges ahead

May 29, 2014 8:05 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

In order to see the true polarization of ferroelectric materials quickly and efficiently, researchers at Argonne National Laboratory have developed a new technique called charge gradient microscopy. Charge gradient microscopy uses the tip of a conventional atomic force microscope to scrape and collect the surface screen charges.

Advertisement

Direct observations offer a new solution to desorption calculations

May 28, 2014 11:41 am | News | Comments

In recent research in Germany, the desorption of oxygen molecules from a silver surface was successfully visualized for the first time using low-energy electron microscopy. The effects account for the shortcomings of conventional models of desorption, which often deliver rates that do not agree with experimentally determined values.

New method is the first to control growth of metal crystals from single atoms

May 28, 2014 11:01 am | News | Comments

Using a doped-graphene matrix to slow down and then trap atoms of the precious metal osmium, researchers in the U.K. have shown the ability to control and quantify the growth of metal-crystals. When the trapped atoms come into contact with further osmium atoms they bind together, eventually growing into 3-D metal-crystals. They have called this new technique nanocrystallometry.

Improving a new breed of solar cells

May 28, 2014 7:42 am | by David L. Chandler, MIT News Office | News | Comments

Solar cell technology has advanced rapidly, as hundreds of groups around the world pursue more than two dozen approaches using different materials, technologies and approaches to improve efficiency and reduce costs. Now a team at Massachusetts Institute of Technology has set a new record for the most efficient quantum-dot cells.

Graphene may make large scale electricity storage a reality

May 27, 2014 9:35 am | News | Comments

Soon after graphene’s isolation, early research already showed that lithium batteries with graphene in their electrodes had a greater capacity and lifespan than standard designs. At the Univ. of Manchester, U.K., where graphene was first isolated, researchers are working with more than 30 companies to advance technology in graphene-enabled energy storage, particularly in the area of lithium-ion batteries and supercapacitors.

Molecules do the triple twist

May 27, 2014 9:28 am | News | Comments

They are 3-D and yet single-sided: Moebius strips. These twisted objects have only one side and one edge. Using this iconic form, an international team of scientists has succeeded in designing the world’s first “triply” twisted molecule. Because of their peculiar quantum mechanical properties these structures are interesting for applications in molecular electronics and optoelectronics.

Advertisement

Miniature truss work

May 27, 2014 7:44 am | by Kimm Fesenmaier, Caltech | News | Comments

Fancy Erector Set? Nope. The elaborate fractal structure shown at left is many, many times smaller than that and is certainly not child's play. It’s the latest example of a fractal nanotruss—nano because the structures are made up of members that are as thin as 5 nm; truss because they are carefully architected structures that might one day be used in structural engineering materials.

Optical antennas trap and control light with the help of graphene

May 23, 2014 12:35 pm | News | Comments

Researchers in Spain have introduced a platform technology based on optical antennas for trapping and controlling light with graphene. Their experiments show that the dramatically squeezed graphene-guided light can be focused and bent, following the fundamental principles of conventional optics. The work opens new opportunities for smaller and faster photonic devices and circuits.

AFM systems take a tip from nanowires

May 23, 2014 12:32 pm | News | Comments

In response to requests from the semiconductor industry, a team of researchers at the Physical Measurement Laboratory has demonstrated that atomic force microscope probe tips made from its near-perfect gallium nitride nanowires are superior in many respects to standard silicon or platinum tips. They also found a way to use the tips as LEDs to illuminate sample regions while scanning.

Scientists discover new magnetic phase in iron-based superconductors

May 23, 2014 8:16 am | News | Comments

Scientists at the U.S. Dept. of Energy’s Argonne National Laboratory have discovered a previously unknown phase in a class of superconductors called iron arsenides. This sheds light on a debate over the interactions between atoms and electrons that are responsible for their unusual superconductivity.

Not all diamonds are forever

May 23, 2014 7:50 am | News | Comments

Images taken by Rice Univ. scientists show that some diamonds are not forever. The Rice researchers behind a new study that explains the creation of nanodiamonds in treated coal also show that some microscopic diamonds only last seconds before fading back into less-structured forms of carbon under the impact of an electron beam.

A new way to make sheets of graphene

May 23, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Graphene’s promise as a material for new kinds of electronic devices, among other uses, has led researchers around the world to study the material in search of new applications. But one of the biggest limitations to wider use of the strong, lightweight, highly conductive material has been the hurdle of fabrication on an industrial scale.

Study probes resonant energy transfer from quantum dots to graphene

May 22, 2014 8:41 am | News | Comments

In recent work at Brookhaven National Laboratory, semiconductor quantum dots (QDs) have been combined with graphene to develop nanoscale photonic devices that can dramatically improve our ability to detect light. The research has demonstrated that the thickness of the organic molecule layer that typically surrounds the QDs is crucial in attaining sufficiently high efficiency of light/energy transfer into the graphene.

Why quantum dots suffer from “fluorescence intermittency”

May 22, 2014 8:12 am | News | Comments

Researchers have found that a particular species of quantum dots that weren't commonly thought to blink, do. So what? Well, although the blinks are short, even brief fluctuations can result in efficiency losses that could cause trouble for using quantum dots to generate photons that move information around inside a quantum computer or between nodes of a future high-security internet based on quantum telecommunications.

Why eumelanin is a good absorber of light

May 22, 2014 7:39 am | by David L. Chandler, MIT News Office | News | Comments

Melanin—and specifically, the form called eumelanin—is the primary pigment that gives humans the coloring of their skin, hair and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer, but the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery.

A new solution for storing hydrogen fuel for alternative energy

May 21, 2014 2:13 pm | News | Comments

An international team of researchers have figured out a new way of storing and releasing hydrogen by making a unique crystal phase of a material containing lithium, boron and the key ingredient, hydrogen. To check how they could get the hydrogen back out of the material, the scientists heated it and found that it released hydrogen easily, quickly and only traces of unwanted by-products.

Researchers combine weak chemical forces to strengthen new maging technology

May 21, 2014 2:08 pm | News | Comments

When doctors perform an MRI, they administer a contrast agent: a chemical that, when injected into the bloodstream or ingested by the patient just before the MRI, improves the clarity of structures or organs in the resulting image. Researchers in Illinois have turned contrast agent technology “inside out” to develop a scalable new way of building multipurpose agents using nanoparticles.

Liquid crystal acts as machine lubricant

May 21, 2014 9:27 am | News | Comments

Although lubricants for machinery are widely used, almost no fundamental innovations for this type of product has been made in the last 20 years, according researchers in Germany who have been working on a new class of lubricating substance. Their new liquid crystalline lubricant enable nearly frictionless sliding because although it is a liquid, the molecules display directional properties like crystals do.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading