Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Atomic placement of elements counts for strong concrete

January 9, 2015 8:20 am | by Mike Williams, Rice Univ. | News | Comments

Even when building big, every atom matters, according to new research on particle-based materials at Rice Univ. Rice researchers have published a study showing what happens at the nanoscale when “structurally complex” materials like concrete rub against each other. The scratches they leave behind can say a lot about their characteristics.

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

A potential long-lasting treatment for sensitive teeth

January 8, 2015 9:22 am | by American Chemical Society | News | Comments

Rather than soothe and comfort, a hot cup of tea or cocoa can cause people with sensitive teeth a jolt of pain. But scientists are now developing a new biomaterial that can potentially rebuild worn enamel and reduce tooth sensitivity for an extended period. They describe the material, which they tested on dogs, in ACS Nano.

Advertisement

Honeybee hive sealant promotes hair growth in mice

January 7, 2015 2:58 pm | by American Chemical Society | News | Comments

Hair loss can be devastating for the millions of men and women who experience it. Now scientists are reporting that a substance from honeybee hives might contain clues for developing a potential new therapy. They found that the material, called propolis, encouraged hair growth in mice. The study appears in the Journal of Agricultural and Food Chemistry.

Cheap asphalt provides “green” carbon capture

January 7, 2015 10:29 am | by Mike Williams, Rice Univ. | News | Comments

The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice Univ. scientists. The Rice laboratory of chemist James Tour followed up on last year’s discovery of a “green” carbon capture material for wellhead sequestration with the news that an even better compound could be made cheaply in a few steps from asphalt.

Nanowire clothing could keep people warm

January 7, 2015 9:26 am | by American Chemical Society | News | Comments

To stay warm when temperatures drop outside, we heat our indoor spaces—even when no one is in them. But scientists have now developed a novel nanowire coating for clothes that can both generate heat and trap the heat from our bodies better than regular clothes. They report on their technology, which could help us reduce our reliance on conventional energy sources, in Nano Letters.

High-temperature superconductor “fingerprint” found

January 7, 2015 8:06 am | by Anne Ju, Cornell Univ. | News | Comments

Theorists and experimentalists working together at Cornell Univ. may have found the answer to a major challenge in condensed matter physics: identifying the smoking gun of why “unconventional” superconductivity occurs, they report in Nature Physics.

Responsive material could be the “golden ticket” of sensing

January 7, 2015 7:45 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres “glued” together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

Advertisement

“Flying carpet” technique uses graphene to deliver one-two punch of anticancer drugs

January 6, 2015 10:02 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

An international team of researchers has developed a drug delivery technique that utilizes graphene strips as “flying carpets” to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective. The technique was found to perform better than either drug in isolation when tested in a mouse model targeting a human lung cancer tumor.

Freshman-level chemistry solves the solubility mystery of graphene oxide films

January 5, 2015 3:21 pm | by Amanda Morris, Northwestern Univ. | News | Comments

A Northwestern Univ.-led team recently found the answer to a mysterious question that has puzzled the materials science community for years—and it came in the form of some surprisingly basic chemistry. Like many scientists, Jiaxing Huang didn't understand why graphene oxide films were highly stable in water.

Researchers synthesize lead sulfide nanocrystals of uniform size

January 5, 2015 10:26 am | by Massachusetts Institute of Technology | News | Comments

Lead sulfide nanocrystals suitable for solar cells have a nearly one-to-one ratio of lead to sulfur atoms, but Massachusetts Institute of Technology (MIT) researchers discovered that to make uniformly sized quantum dots, a higher ratio of lead to sulfur precursors—24 to 1—is better.

Atom-high steps halt oxidation of metal surfaces

January 2, 2015 8:27 am | by Karen McNulty Walsh, Binghamton Univ. | News | Comments

Rust never sleeps. Whether a reference to the 1979 Neil Young album or a product designed to protect metal surfaces, the phrase invokes the idea that corrosion from oxidation is an inevitable, persistent process. But a new Binghamton Univ. study reveals that certain features of metal surfaces can stop the process of oxidation in its tracks.

Gelatin nanoparticles could deliver drugs to the brain

January 2, 2015 8:12 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively. Univ. of Illinois researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective.

Advertisement

Nanotech used to engineer ACL replacements

January 2, 2015 7:50 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lindsey Vonn. Derrick Rose. Tom Brady. Mickey Mantle. They have all fallen victim to the dreaded pop of the knee. Connecting the femur to the tibia, the anterior cruciate ligament (ACL) rupture is one of the most devastating injuries in sports. No other injury has sidelined more athletes for a season or even the rest of a career.

Microscopy pencils patterns in polymers at the nanoscale

December 17, 2014 2:50 pm | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.

New law for superconductors

December 16, 2014 2:47 pm | by Larry Hardesty, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have discovered a new mathematical relationship—between material thickness, temperature and electrical resistance—that appears to hold in all superconductors. The result could shed light on the nature of superconductivity and could also lead to better-engineered superconducting circuits for applications like quantum computing and ultra-low-power computing.

Scientists trace nanoparticles from plants to caterpillars

December 16, 2014 2:37 pm | by Jade Boyd, Rice Univ. | News | Comments

In one of the most comprehensive laboratory studies of its kind, Rice Univ. scientists traced the uptake and accumulation of quantum dot nanoparticles from water to plant roots, plant leaves and leaf-eating caterpillars. The study found that nanoparticle accumulation in both plants and animals varied significantly depending upon the type of surface coating applied to the particles.

Turning hydrogen into “graphene”

December 16, 2014 2:13 pm | by Carnegie Institute | News | Comments

New work from Carnegie Institute's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene under extreme pressures.

Carbon-trapping “sponges” can cut greenhouse gases

December 16, 2014 8:56 am | by Anne Ju, Cornell Univ. | News | Comments

In the fight against global warming, carbon capture is gaining momentum, but standard methods are plagued by toxicity, corrosiveness and inefficiency. Using a bag of chemistry tricks, Cornell Univ. materials scientists have invented low-toxicity, highly effective carbon-trapping “sponges” that could lead to increased use of the technology.

New algorithm a Christmas gift to 3-D printing

December 15, 2014 2:23 pm | by Carol Thorbes, Univ. Communications, Simon Fraser Univ. | News | Comments

Just in time for Christmas, Simon Fraser Univ. computing science professor Richard Zhang reveals how to print a 3-D Christmas tree efficiently and with zero material waste, using the world’s first algorithm for automatically decomposing a 3-D object into what are called pyramidal parts. A pyramidal part has a flat base with the remainder of the shape forming upwards over the base with no overhangs, much like a pyramid.

New findings could point the way to “valleytronics”

December 15, 2014 1:41 pm | by David L. Chandler, MIT News Office | News | Comments

New findings could provide a pathway toward a kind of 2-D microchip that would make use of a characteristic of electrons other than their electrical charge, as in conventional electronics. The new approach is dubbed “valleytronics,” because it makes use of properties of an electron that can be depicted as a pair of deep valleys on a graph of their traits.

Uncovering the Secrets Governing CVD of Graphene

December 15, 2014 11:24 am | by Mark H. Wall, Thermo Fisher Scientific, Madison, Wisc., Robert M. Jacobberger, Dept. of Material Science and Engineering, Univ. of Wisconsin-Madison and Elena Polyakova, Graphene Laboratories, Ronkonkoma, N.Y. | Thermo Fisher Scientific | Articles | Comments

One major challenge currently facing the graphene industry is difficulty in controlling the quality of graphene sheets when produced over large areas using industrial scale techniques. The key to solving this challenge lies in gaining a thorough understanding of the synthetic methods used to fabricate macro-sized single-layer graphene films.

Squid supplies blueprint for printable thermoplastics

December 15, 2014 10:37 am | by Penn State Univ. | News | Comments

Squid, what is it good for? You can eat it and you can make ink or dye from it, and now a Penn State Univ. team of researchers is using it to make a thermoplastic that can be used in 3-D printing. The team looked at the protein complex that exists in the squid ring teeth (SRT). The naturally made material is a thermoplastic, but obtaining it requires a large amount of effort and many squid.

Scientists measure speedy electrons in silicon

December 12, 2014 7:00 am | News | Comments

An international team of physicists and chemists based at UC Berkeley has, for the first time, taken snapshots of this ephemeral event using attosecond pulses of soft X-ray light lasting only a few billionths of a billionth of a second.                             

Nanoshaping method points to future manufacturing technology

December 12, 2014 7:00 am | News | Comments

A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading