Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Heat-based technique offers new way to count microscopic particles

March 13, 2014 9:09 am | News | Comments

Particle counters are used in a wide variety of industries. Researchers in North Carolina have developed a new thermal technique that counts and measures the size of particles, but is less expensive than light-based techniques. It can also be used on a wider array of materials than electricity-based techniques.

Graphene-copper sandwich may improve, shrink electronics

March 12, 2014 2:00 pm | by Sean Nealon, Univ. of Riverside, Calif. | News | Comments

Researchers have discovered that creating a graphene-copper-graphene “sandwich” strongly enhances the heat conducting properties of copper, a discovery that could further help in the downscaling of electronics.

Material rivaling graphene may one day be mined from rocks

March 12, 2014 1:52 pm | News | Comments

Will one-atom-thick layers of molybdenum disulfide, a compound that occurs naturally in rocks, prove to be better than graphene for electronic applications? Recent research into phenomena occurring in the crystal network of this material show signs that might prove to be the case. But physicists in Poland have shown that the nature of the phenomena occurring in layered materials are still ill-understood.

Advertisement

Surface characteristics influence cellular growth on semiconductor material

March 12, 2014 10:03 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Changing the texture and surface characteristics of a semiconductor material at the nanoscale can influence the way that neural cells grow on the material. The finding stems from a study performed by researchers at North Carolina State Univ., the Univ. of North Carolina at Chapel Hill and Purdue Univ., and may have utility for developing future neural implants.

Assessing the chemical composition of a MOF with nanoscale resolution

March 12, 2014 8:38 am | News | Comments

Researchers have applied a novel microscopy technique to characterize metal-organic framework (MOF) materials, potentially opening a pathway for engineering the chemical properties of these materials at the nanoscale. MOFs are composed of metal ions connected by organic linker molecules to form 3-D-crystalline networks of nanopores with high surface areas, leading to applications in catalysis, chemical separation and sensing.

First thin films of spin ice reveal cold secrets

March 12, 2014 8:25 am | News | Comments

Thin films of spin ice have been shown to demonstrate surprising properties which could help in the development of applications of magnetricity, the magnetic equivalent of electricity. Researchers based at the London Centre for Nanotechnology, in collaboration with scientists from Oxford and Cambridge, found that, against expectations, the Third Law of Thermodynamics could be restored in thin films of the magnetic material spin ice.

Acoustic cloaking device hides objects from sound

March 12, 2014 7:35 am | by Ken Kingery, Duke Univ. | News | Comments

Using little more than a few perforated sheets of plastic and a staggering amount of number crunching, Duke Univ. engineers have demonstrated the world’s first 3-D acoustic cloak. The new device reroutes sound waves to create the impression that both the cloak and anything beneath it are not there.

Atomically thin solar cells

March 10, 2014 12:56 pm | News | Comments

Graphene is not the only ultrathin material that exhibits special electronic properties. Ultrathin layers made of tungsten and selenium have recently been created in Austria that show a high internal efficiency when used to gather sunlight. More than 95% of light passes straight through, but a tenth of what is stopped is converted to electricity.

Advertisement

2-D material shows promise for optoelectronics

March 10, 2014 7:42 am | by David L. Chandler, MIT News Office | News | Comments

A team of Massachusetts Institute of Technology researchers has used a novel material that’s just a few atoms thick to create devices that can harness or emit light. This proof-of-concept could lead to ultra-thin, lightweight and flexible photovoltaic cells, light-emitting diodes (LEDs) and other optoelectronic devices, they say.

Scientists create optical nanocavity to improve light absorption in semiconductors

March 7, 2014 1:14 pm | News | Comments

Experts from the Univ. of Buffalo (UB), helped by colleagues from two Chinese universities, have developed an optical "nanocavity" that could help increase the amount of light absorbed by ultrathin semiconductors. The advancement could lead to the creation of more powerful photovoltaic cells and improvements in video cameras and even hydrogen fuel, as the technology could aid the splitting of water using energy from light.

Scientists establish a new principle for future spin devices

March 7, 2014 1:04 pm | News | Comments

A new mechanism of controlling magnetic states by electric currents has been discovered by an international team of researchers who have exploited a quantum phenomenon to control magnetic states with electrical currents. The research hinges on a quantum geometrical phase, called the Berry phase, that exists in the momentum space of electronic band structures in specific materials.

Manufacturing a solution to planet-clogging plastics

March 7, 2014 9:06 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Researchers at Harvard Univ.'s Wyss Institute have developed a method to carry out large-scale manufacturing of everyday objects using a fully degradable bioplastic isolated from shrimp shells. The objects exhibit many of the same properties as those created with synthetic plastics, but without the environmental threat. It also trumps most bioplastics on the market today in posing absolutely no threat to trees.

X-ray laser shed new light on quest for faster data storage

March 7, 2014 8:27 am | by Glenn Roberts Jr., SLAC National Accelerator Laboratory | News | Comments

An experiment at SLAC National Accelerator Laboratory’s x-ray laser has revealed the first atomic-scale details of a new technique that could point the way to faster data storage in smartphones, laptops and other devices. Researchers used pulses of specially tuned light to change the magnetic properties of a material with potential for data storage.

Advertisement

Colored diamonds are a superconductor’s best friend

March 7, 2014 8:02 am | by Robert Sanders, UC Berkeley Media Relations | News | Comments

Flawed but colorful diamonds are among the most sensitive detectors of magnetic fields known today, allowing physicists to explore the minuscule magnetic fields in metals, exotic materials and even human tissue. A team of physicists have now shown that these diamond sensors can measure the tiny magnetic fields in high-temperature superconductors, providing a new tool to probe these much ballyhooed but poorly understood materials.

Team discovers unexpected effect of heavy hydrogen in organic solar cells

March 6, 2014 10:55 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Photovoltaic spray paint could coat the windows and walls of the future if scientists are successful in developing low-cost, flexible solar cells based on organic polymers. Scientists at Oak Ridge National Laboratory recently discovered an unanticipated factor in the performance of polymer-based solar devices that gives new insight on how these materials form and function.

Shrinking gel steers tooth tissue formation

March 6, 2014 9:02 am | by Dan Ferber, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

A bit of pressure from a new shrinking, sponge-like gel is all it takes to turn transplanted unspecialized cells into cells that lay down minerals and begin to form teeth. The bioinspired gel material could one day help repair or replace damaged organs, such as teeth and bone, and possibly other organs as well.

Pumping iron: A hydrogel actuator with mussel tone

March 6, 2014 8:48 am | by Marcia Goodrich, Michigan Technological Univ. | News | Comments

Protein from a small, tasty mollusk inspired Michigan Technological Univ.’s Bruce P. Lee to invent a new type of hydrogel actuator. Hydrogels are soft networks of polymers with high water content, like jello. Because of their soft, gentle texture, they have the potential to interact safely with living tissues and have applications in a number of medical areas, including tissue engineering.

Beckman Coulter partners with Wyatt on particle characterization

March 4, 2014 3:02 pm | News | Comments

Beckman Coulter Life Sciences has announced an agreement with Wyatt Technology Corp. to enable collaboration on products, applications and technical development. The partnership brings together Wyatt’s expertise in protein characterization, light scattering and biophysics with Beckman Coulter’s expertise in particle counting, particle characterization and cell viability measurement.

Physics in 3-D? That's nothing. Try 0-D

March 4, 2014 10:43 am | by Tom Robinette, Univ. of Cincinnati | News | Comments

In physics, there's small, and then there's nullity, as in zero-dimensional. Univ. of Cincinnati researchers have reached this threshold with a special structure, zero-dimensional quantum dots, that may someday lead to better ways of harnessing solar energy, stronger lasers or more sensitive medical diagnostic devices.

Recent advances mean wider use of flexible metallic glass is coming

March 4, 2014 10:35 am | News | Comments

Scientists at Los Alamos National Laboratory are working toward even stronger and more elastic glass types which would fail in a ductile fashion instead of shattering. Researchers there are looking at the initiation of shear-banding events in order to better understand how to control the mechanical properties of these materials.

Researchers identify key intermediate steps in artificial photosynthesis reaction

March 3, 2014 2:42 pm | by Lyn Yarris, Berkeley Lab | News | Comments

A key to realizing commercial-scale artificial photosynthesis technology is the development of electrocatalysts that can efficiently and economically carry out water oxidation reaction that is critical to the process. Heinz Frei, a chemist Lawrence Berkeley National Laboratory, has been at the forefront of this research effort. His latest results represent an important step forward.

Relativity shakes a magnet

March 3, 2014 1:37 pm | News | Comments

Current technologies for writing, storing, and reading information are either charge-based or spin-based. The downside is that weak perturbations such as impurities or radiation can lead to uncontrolled charge redistributions and, as a consequence, to data loss. Researchers in Europe have predicted and discovered a new physical phenomenon that allows them to manipulate the state of a magnet by electric signals and eliminate this loss.

Ultra-fast laser spectroscopy lights way to understanding new materials

March 3, 2014 11:54 am | News | Comments

Scientists at Ames Laboratory are revealing the mysteries of new materials using ultra-fast laser spectroscopy. Researchers recently used ultra-fast laser spectroscopy to examine and explain the mysterious electronic properties of iron-based superconductors. Seeing these dynamics is one emerging strategy to better understanding how these new materials work.

Physicists solve 20-year-old debate surrounding glassy surfaces

February 28, 2014 4:20 pm | News | Comments

U.K. scientists have succeeded in measuring how the surfaces of glassy materials flow like a liquid, even when they should be solid. A series of simple and elegant experiments were the solution to a problem that has been plaguing condensed matter physicists for the past 20 years. The finding has implications for thin-film coating designs.

Quirky photons spin out of the Standard Model

February 28, 2014 3:54 pm | News | Comments

Scientists in Switzerland have analyzed data collected at CERN’s Large Hadron Collider that offer a first-time observation of the polarization of the photon emitted in the weak decay of a bottom quark. This finding opens the way to future measurements, which may reveal a reality deeper than the one described by the present theory of elementary particles, the so-called Standard Model.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading