Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Running on waste heat

August 11, 2014 7:36 am | by Rob Matheson, MIT News Office | News | Comments

It’s estimated that more than half of U.S. energy is wasted as heat. Mostly, this waste heat simply escapes into the air. But that’s beginning to change, thanks to thermoelectric innovators such as Massachusetts Institute of Technology’s Gang Chen. Thermoelectric materials convert temperature differences into electric voltage.

Database accelerates the development of new materials

August 8, 2014 2:05 pm | News | Comments

Performing systematic analyses of both known and imagined chemical compounds to find their key properties, Northwestern Univ. engineers have created a database that takes some of the guesswork out of designing new materials. Called the Open Quantum Materials Database (OQMD), it launched in November and is the largest database in the world of its kind, containing analyses of 285,780 compounds and growing.

Diamonds are a quantum computer’s best friend

August 7, 2014 3:41 pm | News | Comments

For decades, scientists have been trying to use quantum systems for logical calculations, but implementing a system that manages superposition states is challenging. A team of researchers in Austria and Japan has now proposed a new architecture based on microscopic defects in diamond. They are convinced that the basic elements of their newly proposed architecture are better suited to be miniaturized, mass-produced and integrated on a chip.

Advertisement

Synthesis of structurally pure carbon nanotubes using molecular seeds

August 7, 2014 9:34 am | News | Comments

For the first time, researchers have succeeded in "growing" single-wall carbon nanotubes (CNT) with a single predefined structure, and hence with identical electronic properties. The method involved self-assembly of tailor-made organic precursor molecules on a platinum surface. In the future, carbon nanotubes of this kind may be used in ultra-sensitive light detectors and ultra-small transistors.

New material structures bend like microscopic hair

August 6, 2014 10:31 am | by Jennifer Chu, MIT News Office | Videos | Comments

MIT engineers have fabricated a new elastic material coated with microscopic, hairlike structures that tilt in response to a magnetic field. Depending on the field’s orientation, the microhairs can tilt to form a path through which fluid can flow; the material can even direct water upward, against gravity. Researchers say structures may be used in windows to wick away moisture.

Driving Back Defects

August 6, 2014 10:13 am | by Paul Livingstone | Articles | Comments

Traditional lithography is based on a simple principle: Oil and water don’t mix. The method, first developed by an actor in Bavaria in 1796, used a smooth piece of limestone on which an oil-based image was drawn and overlayed with gum arabic in water. During printing, the ink was attracted to the oil, and was repelled by the gum.

Diamond defects engineered for quantum computing and subatomic imaging

August 6, 2014 9:54 am | by Catherine Meyers, Univ. of Chicago | News | Comments

By carefully controlling the position of an atomic-scale diamond defect within a volume smaller than what some viruses would fill, researchers have cleared a path toward better quantum computers and nanoscale sensors. These diamond defects are attractive candidates for qubits, the quantum equivalent of a computing bit, and accurate positioning is key to using them to store and transmit information.

Nano Testing for Future Electronics

August 6, 2014 8:56 am | by Lindsay Hock, Managing Editor | Articles | Comments

The engineering of functional systems at the molecular scale, nanotechnology refers to the applied part of nanoscience which typically includes the engineering to control, manipulate and structure matter at an atomically small scale. Nanotechnology as a field is nothing less than diverse, ranging from extensions of conventional device physics to new approaches based upon molecular self-assembly.

Advertisement

A breath reveals anti-counterfeit drug labels

August 6, 2014 7:48 am | by Kate McAlpine, Univ. of Michigan | News | Comments

An outline of Marilyn Monroe's iconic face appeared on the clear, plastic film when a researcher fogs it with her breath. Terry Shyu, a doctoral student in chemical engineering at the Univ. of Michigan, was demonstrating a new high-tech label for fighting drug counterfeiting. While the researchers don't envision movie stars on medicine bottles, they used Monroe's image to prove their concept.

The atomic picture of magnetism

August 5, 2014 10:05 pm | News | Comments

The search for zero-resistance conductors that can operate at realistic temperatures has been frustrated by the inability to understand high-temperature superconductors, particularly their magnetic structure. Researchers have done this at the atomic scale for the first time with a so-called strongly correlated electron system of iron telluride. Previously, magnetic information was provided by neutron diffraction, which is imprecise.

Thin diamond films provide new material for micro-machines

August 5, 2014 6:12 pm | by Jared Sagoff, Argonne National Laboratory | News | Comments

Most MEMS are made primarily of silicon for reasons of convenience, but they wear out quickly due to friction and they are not biocompatible. Researchers at Argonne National Laboratory and a handful of other institutions around the world have directed their focus on ultrananocrystalline diamond (UNCD), which are smooth and wear-resistant diamond thin films. Recent work opens the door to using diamond for fabricating advanced MEMS devices.

The perfect atom sandwich requires an extra layer

August 5, 2014 11:21 am | by Anne Ju, Cornell Univ. | News | Comments

Like the perfect sandwich, a perfectly engineered thin film for electronics requires not only the right ingredients, but also just the right thickness of each ingredient in the desired order, down to individual layers of atoms. In recent experiments Cornell Univ. researchers found a major difference between assembling atomically precise oxide films and the conventional layer-by-layer “sandwich making” of molecular beam epitaxy.

Used-cigarette butts offer energy storage solution

August 5, 2014 11:08 am | News | Comments

A group of scientists from South Korea have converted used-cigarette butts into a high-performing material that could be integrated into computers, handheld devices, electrical vehicles and wind turbines to store energy. In published research, the team has demonstrated that the cellulose acetate fibres that cigarette filters are mostly composed of could be transformed into a carbon-based material using pyrolysis.

Advertisement

Advanced thin-film technique could deliver long-lasting medication

August 5, 2014 7:57 am | by Peter Dizikes, MIT News Office | News | Comments

About one in four older adults suffers from chronic pain. Many of those people take medication, usually as pills. But this is not an ideal way of treating pain: Patients must take medicine frequently, and can suffer side effects, since the contents of pills spread through the bloodstream to the whole body. Now researchers have refined a technique that could enable pain medication to be released directly to specific parts of the body.

Bottling up sound waves

August 4, 2014 3:23 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

There’s a new wave of sound on the horizon carrying with it a broad scope of tantalizing potential applications, including advanced ultrasonic imaging and therapy, and acoustic cloaking, levitation and particle manipulation. Researchers with Lawrence Berkeley National Laboratory have developed a technique for generating acoustic bottles in open air that can bend the paths of sound waves along prescribed convex trajectories.

MRI for quantum simulation and spin diagnostics

August 4, 2014 10:24 am | by S. Kelley and E. Edwards, Joint Quantum Institute | News | Comments

Magnetic resonance imaging (MRI) is best-known for its use in medicine, but because MRI operates by quantum principles it translates to other quantum systems. Recently, physicists at the Joint Quantum Institute have executed an MRI-like diagnostic on a crystal of interacting quantum spins. The technique reveals many features of their system, such as the spin-spin interaction strengths and the energies of various spin configurations.

“Wetting” a battery’s appetite for renewable energy storage

August 4, 2014 9:22 am | by Frances White, PNNL | Videos | Comments

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material could allow more utilities to store large amounts of renewable energy and make the nation's power system more reliable and resilient.

Light pulses control graphene’s electrical behavior

August 4, 2014 8:10 am | by David L. Chandler, MIT News Office | News | Comments

Graphene has become a focus of research on a variety of potential uses. Now researchers at Massachusetts Institute of Technology have found a way to control how the material conducts electricity by using extremely short light pulses, which could enable its use as a broadband light detector.

Method provides nanoscale details of electrochemical reactions in EV battery materials

August 4, 2014 7:33 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Using a new method to track the electrochemical reactions in a common electric vehicle battery material under operating conditions, scientists at Brookhaven National Laboratory have revealed new insight into why fast charging inhibits this material's performance. The study also provides the first direct experimental evidence to support a particular model of the electrochemical reaction. 

Researchers close in on pure lithium anode

July 31, 2014 4:15 pm | by Andrew Myers, Stanford Univ. | News | Comments

In a recent paper, a team at Stanford Univ. which includes materials science expert Yi Cui and 2011 R&D Magazine Scientist of the Year Steven Chu report that they have taken a big step toward accomplishing what battery designers have been trying to do for decades: design a pure lithium anode.

Chemists demonstrate “bricks-and-mortar” assembly of new molecular structures

July 31, 2014 10:16 am | News | Comments

Scientists in Indiana have recently described the self-assembly of large, symmetrical molecules in “bricks-and-mortar” fashion. While researchers have created many such large, cyclic molecules, or macrocycles, what these chemists have built is a cyanostar, a five-sided molecule that is unusual in that it can be readily synthesized in a "one pot" process. It also has an unprecedented ability to bind with large, negatively charged anions.

Nature inspires a greener way to make colorful plastics

July 30, 2014 2:00 pm | News | Comments

Long before humans figured out how to create colors, nature had already perfected the process. Now scientists are tapping into those secrets to develop a more environmentally friendly way to make colored plastics. Their paper on using structure—or the shapes and architectures of materials—rather than dyes, to produce color appears in Nano Letters.

Tough foam from tiny sheets

July 29, 2014 12:59 pm | by Mike Williams, Rice Univ. | News | Comments

Tough, ultra-light foam of atom-thick sheets can be made to any size and shape through a chemical process invented at Rice Univ. In microscopic images, the foam dubbed “GO-0.5BN” looks like a nanoscale building, with floors and walls that reinforce each other. The structure consists of a pair of 2-D materials: floors and walls of graphene oxide that self-assemble with the assistance of hexagonal boron nitride platelets.

A new way to make microstructured surfaces

July 29, 2014 12:49 pm | by David L. Chandler, MIT News Office | News | Comments

A team of researchers has created a new way of manufacturing microstructured surfaces that have novel 3-D textures. These surfaces, made by self-assembly of carbon nanotubes, could exhibit a variety of useful properties—including controllable mechanical stiffness and strength, or the ability to repel water in a certain direction.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading