Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

Researchers synthesize lead sulfide nanocrystals of uniform size

January 5, 2015 10:26 am | by Massachusetts Institute of Technology | News | Comments

Lead sulfide nanocrystals suitable for solar cells have a nearly one-to-one ratio of lead to sulfur atoms, but Massachusetts Institute of Technology (MIT) researchers discovered that to make uniformly sized quantum dots, a higher ratio of lead to sulfur precursors—24 to 1—is better.

Atom-high steps halt oxidation of metal surfaces

January 2, 2015 8:27 am | by Karen McNulty Walsh, Binghamton Univ. | News | Comments

Rust never sleeps. Whether a reference to the 1979 Neil Young album or a product designed to protect metal surfaces, the phrase invokes the idea that corrosion from oxidation is an inevitable, persistent process. But a new Binghamton Univ. study reveals that certain features of metal surfaces can stop the process of oxidation in its tracks.

Gelatin nanoparticles could deliver drugs to the brain

January 2, 2015 8:12 am | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | News | Comments

Stroke victims could have more time to seek treatment that could reduce harmful effects on the brain, thanks to tiny blobs of gelatin that could deliver the medication to the brain noninvasively. Univ. of Illinois researchers found that gelatin nanoparticles could be laced with medications for delivery to the brain, and that they could extend the treatment window for when a drug could be effective.

Advertisement

Nanotech used to engineer ACL replacements

January 2, 2015 7:50 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lindsey Vonn. Derrick Rose. Tom Brady. Mickey Mantle. They have all fallen victim to the dreaded pop of the knee. Connecting the femur to the tibia, the anterior cruciate ligament (ACL) rupture is one of the most devastating injuries in sports. No other injury has sidelined more athletes for a season or even the rest of a career.

Microscopy pencils patterns in polymers at the nanoscale

December 17, 2014 2:50 pm | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Scientists have used advanced microscopy to carve out nanoscale designs on the surface of a new class of ionic polymer materials for the first time. The study provides new evidence that atomic force microscopy, or AFM, could be used to precisely fabricate materials needed for increasingly smaller devices.

New law for superconductors

December 16, 2014 2:47 pm | by Larry Hardesty, MIT News Office | News | Comments

Massachusetts Institute of Technology researchers have discovered a new mathematical relationship—between material thickness, temperature and electrical resistance—that appears to hold in all superconductors. The result could shed light on the nature of superconductivity and could also lead to better-engineered superconducting circuits for applications like quantum computing and ultra-low-power computing.

Scientists trace nanoparticles from plants to caterpillars

December 16, 2014 2:37 pm | by Jade Boyd, Rice Univ. | News | Comments

In one of the most comprehensive laboratory studies of its kind, Rice Univ. scientists traced the uptake and accumulation of quantum dot nanoparticles from water to plant roots, plant leaves and leaf-eating caterpillars. The study found that nanoparticle accumulation in both plants and animals varied significantly depending upon the type of surface coating applied to the particles.

Turning hydrogen into “graphene”

December 16, 2014 2:13 pm | by Carnegie Institute | News | Comments

New work from Carnegie Institute's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene under extreme pressures.

Advertisement

Carbon-trapping “sponges” can cut greenhouse gases

December 16, 2014 8:56 am | by Anne Ju, Cornell Univ. | News | Comments

In the fight against global warming, carbon capture is gaining momentum, but standard methods are plagued by toxicity, corrosiveness and inefficiency. Using a bag of chemistry tricks, Cornell Univ. materials scientists have invented low-toxicity, highly effective carbon-trapping “sponges” that could lead to increased use of the technology.

New algorithm a Christmas gift to 3-D printing

December 15, 2014 2:23 pm | by Carol Thorbes, Univ. Communications, Simon Fraser Univ. | News | Comments

Just in time for Christmas, Simon Fraser Univ. computing science professor Richard Zhang reveals how to print a 3-D Christmas tree efficiently and with zero material waste, using the world’s first algorithm for automatically decomposing a 3-D object into what are called pyramidal parts. A pyramidal part has a flat base with the remainder of the shape forming upwards over the base with no overhangs, much like a pyramid.

New findings could point the way to “valleytronics”

December 15, 2014 1:41 pm | by David L. Chandler, MIT News Office | News | Comments

New findings could provide a pathway toward a kind of 2-D microchip that would make use of a characteristic of electrons other than their electrical charge, as in conventional electronics. The new approach is dubbed “valleytronics,” because it makes use of properties of an electron that can be depicted as a pair of deep valleys on a graph of their traits.

Uncovering the Secrets Governing CVD of Graphene

December 15, 2014 11:24 am | by Mark H. Wall, Thermo Fisher Scientific, Madison, Wisc., Robert M. Jacobberger, Dept. of Material Science and Engineering, Univ. of Wisconsin-Madison and Elena Polyakova, Graphene Laboratories, Ronkonkoma, N.Y. | Thermo Fisher Scientific | Articles | Comments

One major challenge currently facing the graphene industry is difficulty in controlling the quality of graphene sheets when produced over large areas using industrial scale techniques. The key to solving this challenge lies in gaining a thorough understanding of the synthetic methods used to fabricate macro-sized single-layer graphene films.

Squid supplies blueprint for printable thermoplastics

December 15, 2014 10:37 am | by Penn State Univ. | News | Comments

Squid, what is it good for? You can eat it and you can make ink or dye from it, and now a Penn State Univ. team of researchers is using it to make a thermoplastic that can be used in 3-D printing. The team looked at the protein complex that exists in the squid ring teeth (SRT). The naturally made material is a thermoplastic, but obtaining it requires a large amount of effort and many squid.

Advertisement

Scientists measure speedy electrons in silicon

December 12, 2014 7:00 am | News | Comments

An international team of physicists and chemists based at UC Berkeley has, for the first time, taken snapshots of this ephemeral event using attosecond pulses of soft X-ray light lasting only a few billionths of a billionth of a second.                             

Nanoshaping method points to future manufacturing technology

December 12, 2014 7:00 am | News | Comments

A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.

‘High-entropy’ alloy is as light as aluminum, as strong as titanium alloys

December 11, 2014 8:09 am | News | Comments

Researchers have developed a new “high-entropy” metal alloy that has a higher strength-to-weight ratio than any other existing metal material. High-entropy alloys are materials that consist of five or more metals in approximately equal amounts. 

Contact lens merges plastics and active electronics via 3-D printing

December 10, 2014 7:56 am | News | Comments

As part of a project demonstrating new 3-D printing techniques, Princeton researchers have embedded tiny light-emitting diodes into a standard contact lens, allowing the device to project beams of colored light. The lens is not designed for actual use, though. Instead, the team created the device to demonstrate the ability to 3-D print electronics into complex shapes and materials.

Defects are perfect in laser-induced graphene

December 10, 2014 7:50 am | News | Comments

Researchers at Rice University have created flexible, patterned sheets of multilayer graphene from a cheap polymer by burning it with a computer-controlled laser. The process works in air at room temperature and eliminates the need for hot furnaces and controlled environments, and it makes graphene that may be suitable for electronics or energy storage.

Composite materials can be designed in a supercomputer 'virtual lab'

December 9, 2014 12:45 pm | News | Comments

Scientists have shown how advanced computer simulations can be used to design new composite materials. Nanocomposites, which are widely used in industry, are revolutionary materials in which microscopic particles are dispersed through plastics. 

Germanium comes home to Purdue for semiconductor milestone

December 8, 2014 4:26 pm | by Emil Venere, Purdue Univ. | News | Comments

A laboratory at Purdue Univ. provided a critical part of the world's first transistor in 1947—the purified germanium semiconductor—and now researchers here are on the forefront of a new germanium milestone. The team has created the first modern germanium circuit—a complementary metal–oxide–semiconductor (CMOS) device—using germanium as the semiconductor instead of silicon.

New semiconductor could change face of consumer electronics

December 8, 2014 9:54 am | by David Stauth, Oregon State Univ. | News | Comments

Materials first developed at Oregon State Univ. more than a decade ago with an eye toward making “transparent” transistors may be about to shake up the field of consumer electronics; and the first uses are not even based on the transparent capability of the materials. In the continued work and in collaboration with private industry, certain transparent transistor materials are now gaining some of their first commercial applications.

Rattled atoms mimic high-temperature superconductivity

December 8, 2014 9:29 am | by SLAC Office of Communications | News | Comments

An experiment at SLAC National Accelerator Laboratory provided the first fleeting glimpse of the atomic structure of a material as it entered a state resembling room-temperature superconductivity—a long-sought phenomenon in which materials might conduct electricity with 100% efficiency under everyday conditions.

Uniform nanowire arrays for science, manufacturing

December 8, 2014 8:36 am | by Kris Bertness, NIST | News | Comments

Defect-free nanowires with diameters in the range of 100 nm hold significant promise for numerous in-demand applications. That promise can't be realized, however, unless the wires can be fabricated in large uniform arrays using methods compatible with high-volume manufacture. To date, that has not been possible for arbitrary spacings in ultra-high vacuum growth.

Technique offers spray-on solar power

December 8, 2014 8:18 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | Videos | Comments

Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap. A Univ. of Toronto team has invented a new way to spray solar cells onto flexible surfaces using miniscule light-sensitive materials known as colloidal quantum dots (CQDs)—a major step toward making spray-on solar cells easy and cheap to manufacture.

Nanoparticle allows low-cost creation of 3-D nanostructures

December 8, 2014 7:51 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. have developed a new lithography technique that uses nanoscale spheres to create 3-D structures with biomedical, electronic and photonic applications. The new technique is significantly less expensive than conventional methods and does not rely on stacking 2-D patterns to create 3-D structures.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading