Advertisement
Material Science
Subscribe to Material Science
View Sample

FREE Email Newsletter

New material, technique efficiently produce hydrogen, syngas fuel feedstock

January 15, 2015 8:00 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A team of chemical engineering researchers has developed a technique that uses a new catalyst to convert methane and water into hydrogen and a fuel feedstock called syngas with the assistance of solar power. The catalytic material is more than three times more efficient at converting water into hydrogen gas than previous thermal water-splitting methods.

Carbon nanotube finding could lead to flexible electronics with longer battery life

January 14, 2015 4:04 pm | by Adam Malecek, Univ. of Wisconsin-Madison | News | Comments

Univ. of Wisconsin-Madison materials engineers have made a significant leap toward creating higher-performance electronics with improved battery life and the ability to flex and stretch. The team has reported the highest-performing carbon nanotube transistors ever demonstrated. In addition to paving the way for improved consumer electronics, this technology could also have specific uses in industrial and military applications.

Laser-induced graphene “super” for electronics

January 14, 2015 10:34 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists advanced their recent development of laser-induced graphene by producing and testing stacked, 3-D supercapacitors, energy storage devices that are important for portable, flexible electronics. The Rice laboratory of chemist James Tour discovered last year that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene.

Advertisement

Zinc-oxide materials tapped for tiny energy harvesting devices

January 14, 2015 8:45 am | by American Institute of Physics | News | Comments

Today, we're surrounded by a variety of electronic devices that are moving increasingly closer to us. Many types of smart devices are readily available and convenient to use. The goal now is to make wearable electronics that are flexible, sustainable and powered by ambient renewable energy. This last goal inspired a group of researchers to explore zinc oxide as an effective material choice.

Single-photon emission enhancement

January 14, 2015 8:01 am | by Emil Venere, Purdue Univ. | News | Comments

Researchers have demonstrated a new way to enhance the emission of single photons by using "hyperbolic metamaterials," a step toward creating devices in work aimed at developing quantum computers and communications technologies. Optical metamaterials harness clouds of electrons called surface plasmons to manipulate and control light.

Crush those clinkers while they’re hot

January 14, 2015 7:48 am | by Mike Williams, Rice Univ. | News | Comments

Making cement is a centuries-old art that has yet to be perfected, according to researchers at Rice Univ. who believe it can be still more efficient. Former Rice graduate student Lu Chen and materials scientist Rouzbeh Shahsavari calculated that fine-tuning the process by which round lumps of calcium silicate called clinkers are turned into cement can save a lot of energy.

Glass for battery electrodes

January 13, 2015 11:51 am | by ETH Zurich | News | Comments

For some time now, energy experts have been adamant that we will need much more clean energy in the future if we are to replace fossil fuel sources and reduce carbon dioxide emissions. For example, electric cars will need to replace the petrol-powered cars driving on our roads.

Researchers develop multiferroic materials, devices integrated with silicon chips

January 13, 2015 10:59 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

A research team led by North Carolina State Univ. has made two advances in multiferroic materials, including the ability to integrate them on a silicon chip, which will allow the development of new electronic memory devices. The researchers have already created prototypes of the devices and are in the process of testing them. Multiferroic materials have both ferroelectric and ferromagnetic properties.

Advertisement

Solar cell polymers with multiplied electrical output

January 13, 2015 8:52 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

One challenge in improving the efficiency of solar cells is some of the absorbed light energy is lost as heat. So scientists have been looking to design materials that can convert more of that energy into useful electricity. Now a team from Brookhaven National Laboratory and Columbia Univ. has paired up polymers that recover some of that lost energy by producing two electrical charge carriers per unit of light instead of the usual one.

Controlling the properties of nanomaterials

January 13, 2015 8:43 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Scientists at Oak Ridge National Laboratory are learning how the properties of water molecules on the surface of metal oxides can be used to better control these minerals and use them to make products such as more efficient semiconductors for organic light-emitting diodes and solar cells, safer vehicle glass in fog and frost and more environmentally friendly chemical sensors for industrial applications. 

Catalyst process uses light for rapid polymerization

January 13, 2015 8:12 am | by Melissa Van De Werfhorst, Univ. of California, Santa Barbara | News | Comments

A team of chemistry and materials science experts from Univ. of California, Santa Barbara and The Dow Chemical Company has created a novel way to overcome one of the major hurdles preventing the widespread use of controlled radical polymerization.

Manipulating nanoribbons at the molecular level

January 12, 2015 12:44 pm | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

Narrow strips of graphene called nanoribbons exhibit extraordinary properties that make them important candidates for future nanoelectronic technologies. A barrier to exploiting them, however, is the difficulty of controlling their shape at the atomic scale, a prerequisite for many possible applications.

Novel superconducting hybrid crystals developed

January 12, 2015 11:39 am | by Gertie Skaarup, Niels Bohr Institute | News | Comments

A new type of nanowire crystals that fuses semiconducting and metallic materials on the atomic scale could lay the foundation for future semiconducting electronics. Researchers at the Univ. of Copenhagen are behind the breakthrough, which has great potential. The development and quality of extremely small electronic circuits are critical to how and how well future computers and other electronic devices will function.

Advertisement

One step closer to a next-generation electric car battery

January 12, 2015 11:22 am | by Nick Manning, Univ. of Waterloo | News | Comments

An ultra-thin nanomaterial is at the heart of a major breakthrough by Univ. of Waterloo scientists who are in a global race to invent a cheaper, lighter and more powerful rechargeable battery for electric vehicles. Their discovery of a material that maintains a rechargable sulphur cathode helps to overcome a primary hurdle to building a lithium-sulphur battery.

Quantum dots have made quantum leaps

January 9, 2015 8:57 am | by Julie Chao, Lawrence Berkeley National Laboratory | News | Comments

Outside his career as a noted nanochemist, Lawrence Berkeley National Laboratory (Berkeley Lab) director Paul Alivisatos is an avid photographer. To show off his photos, his preferred device is a Kindle Fire HDX tablet because “the color display is a whole lot better than other tablets,” he says.

Atomic placement of elements counts for strong concrete

January 9, 2015 8:20 am | by Mike Williams, Rice Univ. | News | Comments

Even when building big, every atom matters, according to new research on particle-based materials at Rice Univ. Rice researchers have published a study showing what happens at the nanoscale when “structurally complex” materials like concrete rub against each other. The scratches they leave behind can say a lot about their characteristics.

Compact batteries enhanced by spontaneous silver matrix formations

January 9, 2015 7:40 am | by Justin Eure, Brookhaven National Laboratory | News | Comments

In a promising lithium-based battery, the formation of a highly conductive silver matrix transforms a material otherwise plagued by low conductivity. To optimize these multi-metallic batteries, scientists needed a way to see where, when and how these silver, nanoscale "bridges" emerge. Now, researchers have used x-rays to map this changing atomic architecture and revealed its link to the battery's rate of discharge.

A potential long-lasting treatment for sensitive teeth

January 8, 2015 9:22 am | by American Chemical Society | News | Comments

Rather than soothe and comfort, a hot cup of tea or cocoa can cause people with sensitive teeth a jolt of pain. But scientists are now developing a new biomaterial that can potentially rebuild worn enamel and reduce tooth sensitivity for an extended period. They describe the material, which they tested on dogs, in ACS Nano.

Honeybee hive sealant promotes hair growth in mice

January 7, 2015 2:58 pm | by American Chemical Society | News | Comments

Hair loss can be devastating for the millions of men and women who experience it. Now scientists are reporting that a substance from honeybee hives might contain clues for developing a potential new therapy. They found that the material, called propolis, encouraged hair growth in mice. The study appears in the Journal of Agricultural and Food Chemistry.

Cheap asphalt provides “green” carbon capture

January 7, 2015 10:29 am | by Mike Williams, Rice Univ. | News | Comments

The best material to keep carbon dioxide from natural gas wells from fouling the atmosphere may be a derivative of asphalt, according to Rice Univ. scientists. The Rice laboratory of chemist James Tour followed up on last year’s discovery of a “green” carbon capture material for wellhead sequestration with the news that an even better compound could be made cheaply in a few steps from asphalt.

Nanowire clothing could keep people warm

January 7, 2015 9:26 am | by American Chemical Society | News | Comments

To stay warm when temperatures drop outside, we heat our indoor spaces—even when no one is in them. But scientists have now developed a novel nanowire coating for clothes that can both generate heat and trap the heat from our bodies better than regular clothes. They report on their technology, which could help us reduce our reliance on conventional energy sources, in Nano Letters.

High-temperature superconductor “fingerprint” found

January 7, 2015 8:06 am | by Anne Ju, Cornell Univ. | News | Comments

Theorists and experimentalists working together at Cornell Univ. may have found the answer to a major challenge in condensed matter physics: identifying the smoking gun of why “unconventional” superconductivity occurs, they report in Nature Physics.

Responsive material could be the “golden ticket” of sensing

January 7, 2015 7:45 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed a new self-assembled material, which, by changing its shape, can amplify small variations in temperature and concentration of biomolecules, making them easier to detect. The material, which consists of synthetic spheres “glued” together with short strands of DNA, could be used to underpin a new class of biosensors, or form the basis for new drug delivery systems.

“Flying carpet” technique uses graphene to deliver one-two punch of anticancer drugs

January 6, 2015 10:02 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

An international team of researchers has developed a drug delivery technique that utilizes graphene strips as “flying carpets” to deliver two anticancer drugs sequentially to cancer cells, with each drug targeting the distinct part of the cell where it will be most effective. The technique was found to perform better than either drug in isolation when tested in a mouse model targeting a human lung cancer tumor.

Freshman-level chemistry solves the solubility mystery of graphene oxide films

January 5, 2015 3:21 pm | by Amanda Morris, Northwestern Univ. | News | Comments

A Northwestern Univ.-led team recently found the answer to a mysterious question that has puzzled the materials science community for years—and it came in the form of some surprisingly basic chemistry. Like many scientists, Jiaxing Huang didn't understand why graphene oxide films were highly stable in water.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading