Advertisement
Engineering
Subscribe to Engineering

The Lead

Sound-powered chip to serve as medical device

October 17, 2014 9:18 am | by Tom Abate, Stanford Engineering | News | Comments

Medical researchers would like to plant tiny electronic devices deep inside our bodies to monitor biological processes and deliver pinpoint therapies to treat illness or relieve pain. But so far engineers have been unable to make such devices small and useful enough. Providing electric power to medical implants has been one stumbling block. Using wires or batteries to deliver power tends to make implants too big, too clumsy—or both.

Superconducting circuits, simplified

October 17, 2014 7:49 am | by Larry Hardesty, MIT News Office | News | Comments

Computer chips with superconducting circuits would be 50 to 100 times as energy efficient as...

Computing with magnetic “tornadoes”

October 16, 2014 10:27 am | News | Comments

Magnetic...

Research reveals unique capabilities of 3-D printing

October 16, 2014 8:51 am | by Morgan McCorkle, Oak Ridge National Laboratory | News | Comments

Researchers at Oak Ridge National Laboratory have demonstrated an additive manufacturing method...

View Sample

FREE Email Newsletter

Biological sample prep time cut dramatically

October 16, 2014 8:40 am | by Stephen P Wampler, Lawrence Livermore National Laboratory | News | Comments

When Lawrence Livermore National Laboratory researchers invented the field of biological accelerator mass spectrometry (AMS) in the late 1980s, the process of preparing the samples was time-consuming and cumbersome. Physicists and biomedical researchers used torches, vacuum lines, special chemistries and high degrees of skill to convert biological samples into graphite targets that could then be run through the AMS system.

Study reveals optimal particle size for anticancer nanomedicines

October 16, 2014 8:10 am | News | Comments

Nanomedicines consisting of nanoparticles for targeted drug delivery to specific tissues and cells offer new solutions for cancer diagnosis and therapy. Understanding the interdependency of physiochemical properties of nanomedicines, in correlation to their biological responses and functions, is crucial for their further development of as cancer-fighters.

Big step in battling bladder disease

October 16, 2014 7:46 am | by Rob Matheson, MIT News Office | News | Comments

The millions of people worldwide who suffer from the painful bladder disease known as interstitial cystitis (IC) may soon have a better, long-term treatment option, thanks to a controlled-release, implantable device invented by Massachusetts Institute of Technology Prof. Michael Cima and other researchers. The device is a pretzel-shaped silicone tube that could be inserted into the bladder, slowly releasing lidocaine over two weeks.

Advertisement

A brighter design emerges for low-cost, “greener” LED light bulbs

October 15, 2014 2:52 pm | News | Comments

The phase-out of traditional incandescent bulbs in the U.S. and elsewhere, as well as a growing interest in energy efficiency, has given LED lighting a sales boost. That trend could be short-lived as key materials known as rare earth elements become more expensive. Scientists at Rutgers Univ., however, have now designed new materials for making household LED bulbs without using these ingredients.

Researchers develop world’s thinnest electric generator

October 15, 2014 2:47 pm | News | Comments

Scientists report that they have made the first experimental observation of piezoelectricity and the piezotronic effect in an atomically thin material, molybdenum disulfide. This finding has resulted in a unique electric generator and could point the way to mechanosensation devices that are optically transparent, extremely light, and very bendable and stretchable.

Spacecraft to attempt comet landing next month

October 15, 2014 11:56 am | News | Comments

The European Space Agency has confirmed the time and place it will attempt to land the first spacecraft on a comet. The unmanned probe Rosetta will release a 100-kg (220-lb) lander on Nov. 12 in a maneuver that will take about seven hours.

Electric vehicle technology packs more punch in smaller package

October 15, 2014 8:46 am | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Using 3-D printing and novel semiconductors, researchers at Oak Ridge National Laboratory have created a power inverter that could make electric vehicles lighter, more powerful and more efficient. At the core of this development is wide bandgap material made of silicon carbide with qualities superior to standard semiconductor materials.

MAVEN’s first look at Mars holds surprises

October 15, 2014 8:06 am | by Jim Scott, CU-Boulder Media Relations | News | Comments

NASA’s MAVEN spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars and produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen and carbon coronas surrounding the Red Planet. In addition, the new observations allowed scientists to make a comprehensive map of highly variable ozone in the Martian atmosphere underlying the coronas.

Advertisement

Force-sensing microrobots to probe cells

October 14, 2014 7:56 am | by Emil Venere, Purdue Univ. | News | Comments

Inexpensive microrobots capable of probing and manipulating individual cells and tissue for biological research and medical applications are closer to reality with the design of a system that senses the minute forces exerted by a robot's tiny probe. Microrobots small enough to interact with cells already exist. However, there is no easy, inexpensive way to measure the small forces applied to cells by the robots, until now.

Ultra-fast charging batteries last 20 years, charge to 70% in 2 min

October 13, 2014 9:02 am | News | Comments

Scientists at Nanyang Technology University (NTU) in Singapore have developed a new type of lithium-ion battery in which the traditional graphite used for the anode has been replaced with a new gel material made from titanium dioxide. The new design allows the battery to endure more than 10,000 cycles, vs. about 500 recharge cycles for typical rechargeable lithium-ion batteries.

Teams set new records for silicon quantum computing

October 13, 2014 8:55 am | Videos | Comments

Two research teams working in the same laboratories in Australia have found distinct solutions to a critical challenge that has held back the realization of super powerful quantum computers. The teams created two types of quantum bits, or "qubits", which are the building blocks for quantum computers, that each process quantum data with an accuracy above 99%. They represent parallel pathways for building a quantum computer in silicon.

Researchers use real-world data to model the effect of more solar on the grid

October 13, 2014 8:41 am | by Louise Lerner, Argonne National Laboratory | News | Comments

American electrical utilities do a pretty fantastic job of getting us electricity when we need it. In 2006, the power was out on average for just 0.03% of the year in the U.S. But right now, this system depends on getting most of its power from coal, nuclear and gas plants: big, dependable power plants that can be turned on and off when needed.

Plasmonic paper detects trace amounts of chemicals and molecules

October 10, 2014 12:25 pm | News | Comments

Using a common laboratory filter paper decorated with gold nanoparticles, researchers at Washington Univ. in St. Louis have created a unique platform, known as “plasmonic paper,” for detecting and characterizing even trace amounts of chemicals and biologically important molecules, including explosives, chemical warfare agents, environmental pollutants and disease markers.

Advertisement

Automated imaging system looks underground to improve crops

October 10, 2014 8:22 am | by John Toon, Georgia Institute of Technology | News | Comments

Plant scientists are working to improve important food crops to meet the food needs of a growing world population. However, boosting crop output will require improving more than what can be seen of these plants above the ground. Root systems are essential to gathering water and nutrients, but understanding what’s happening in these unseen parts of the plants has until now depended mostly on lab studies and subjective field measurements.

Snakes and snake-like robots show how sidewinders conquer sandy slopes

October 10, 2014 8:15 am | by John Toon, Georgia Tech and Byron Spice, Carnegie Mellon Univ. | Videos | Comments

The amazing ability of sidewinder snakes to quickly climb sandy slopes was once something biologists only vaguely understood and roboticists only dreamed of replicating. By studying the snakes in a unique bed of inclined sand and using a snake-like robot to test ideas spawned by observing the real animals, both biologists and roboticists have now gained long-sought insights, including how sidewinders effectively traverse sandy slopes.

DNA nanofoundries cast custom-shaped metal nanoparticles

October 10, 2014 7:50 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | News | Comments

Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. have unveiled a new method to form tiny 3-D metal nanoparticles in prescribed shapes and dimensions using DNA, nature's building block, as a construction mold. The ability to mold inorganic nanoparticles out of materials such as gold and silver in precisely designed 3-D shapes is a significant breakthrough.

Hybrid materials could smash the solar efficiency ceiling

October 9, 2014 8:57 am | News | Comments

Researchers have developed a new method for harvesting the energy carried by particles known as “dark” spin-triplet excitons with close to 100% efficiency, clearing the way for hybrid solar cells which could far surpass current efficiency limits. To date, this type of energy transfer had only been shown for “bright” spin-singlet excitons.

NIST quantum probe enhances electric field measurements

October 9, 2014 8:37 am | News | Comments

Researchers at NIST and the Univ. of Michigan have demonstrated a technique based on the quantum properties of atoms that directly links measurements of electric field strength to the International System of Units. The new method could improve the sensitivity, precision and ease of tests and calibrations of antennas, sensors, and biomedical and nano-electronic systems and facilitate the design of novel devices.

Researchers pump up oil accumulation in plant leaves

October 8, 2014 9:20 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Increasing the oil content of plant biomass could help fulfill the nation's increasing demand for renewable energy feedstocks. But many of the details of how plant leaves make and break down oils have remained a mystery. Now a series of detailed genetic studies conducted at Brookhaven National Laboratory reveals previously unknown biochemical details about those metabolic pathways.

Charge transport jamming in solar cells

October 7, 2014 2:08 pm | News | Comments

Conventional silicon solar cells could have an inexpensive competitor in the near future. Researchers in Europe have examined the working principle of a cell where an organic-inorganic perovskite compound acts as a light absorber. The scientists observed that charge carriers accumulate in a layer in these photovoltaic elements. If this jam can be dissolved, the already considerable efficiency of these solar cells could be further improved.

Two Japanese, one American win Nobel for LED lights

October 7, 2014 9:10 am | by Karl Ritter and Malin Rising, Associated Press | Videos | Comments

Isamu Akasaki and Hiroshi Amano of Japan and U.S. scientist Shuji Nakamura won the 2014 Nobel Prize in physics for the invention of blue light-emitting diodes, a breakthrough that spurred the development of light-emitting diode (LED) technology. Scientists had struggled for decades to produce the blue diodes that are a crucial component in producing white light from LEDs when the three laureates made their breakthroughs in the early 1990s.

Dialing It In

October 6, 2014 2:59 pm | by Ra’ef Mikhail, Edmund Optics | Articles | Comments

Optical system designers often need to evaluate the effect of different laser beam diameters during prototyping. Although it’s possible to do this by introducing several different beam expanders in sequence, or by stopping the beam down with apertures, variable-magnification beam expanders provide flexibility and performance in an easy-to-use package.

Google Glass gets speech-to-text update

October 6, 2014 8:20 am | by Jason Maderer, Georgia Institute of Technology | Videos | Comments

A team of Georgia Institute of Technology researchers has created speech-to-text software for Google Glass that helps hard-of-hearing users with everyday conversations. A hard-of-hearing person wears Glass while a second person speaks directly into a smartphone. The speech is converted to text, sent to Glass and displayed on its heads-up display.

Untangling how cables coil

October 6, 2014 7:57 am | by Jennifer Chu, MIT News Office | Videos | Comments

The world’s fiber-optic network spans more than 550,000 miles of undersea cable that transmits Email, Websites and other packets of data between continents, all at the speed of light. A rip or tangle in any part of this network can significantly slow telecommunications around the world. Now, engineers have developed a method that predicts the pattern of coils and tangles that a cable may form when deployed onto a rigid surface.

Imaging system obtains 12 times more information than the human eye

October 3, 2014 11:41 am | News | Comments

Researchers in Spain and Italy have designed a multispectral imaging system capable of obtaining information from a total of 36 color channels, which is up to twelve times more color information than the human eye and conventional cameras, which have three color image sensors. This important scientific development will facilitate the easy capture of multispectral images in real time.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading