Advertisement
Engineering
Subscribe to Engineering

The Lead

Research aims to improve rechargeable batteries by focusing on graphene oxide paper

December 19, 2014 8:19 am | News | Comments

A Kansas State University engineering team has discovered some of graphene oxide's important properties that can improve sodium- and lithium-ion flexible batteries.
                               

Choreography of an electron pair

December 18, 2014 2:47 pm | News | Comments

A German-Spanish team working with researchers from the Max Planck Institute for Nuclear Physics...

Sensor could improve one of nano research’s most useful microscopes

December 17, 2014 3:31 pm | by Chad Boutin, NIST | News | Comments

Spotting molecule-sized features may become both easier and more accurate with a sensor...

Switching to spintronics

December 17, 2014 3:18 pm | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In a development that holds promise for future magnetic memory and logic devices, researchers...

View Sample

FREE Email Newsletter

New conversion process turns biomass “waste” into lucrative chemical products

December 17, 2014 2:58 pm | by Elizabeth K. Gardner, Purdue Univ. | Videos | Comments

A new catalytic process is able to convert what was once considered biomass waste into lucrative chemical products that can be used in fragrances, flavorings or to create high-octane fuel. A team of researchers from Purdue Univ.'s Center for Direct Catalytic Conversion of Biomass to Biofuels, or C3Bio, has developed a process that uses a chemical catalyst and heat to spur reactions that convert lignin into valuable chemical commodities.

A Clear Vision

December 17, 2014 9:29 am | by Paul Livingstone | Articles | Comments

Around 400 BC, Hippocrates was among the first people in recorded history to postulate the brain as the seat of sensation and intelligence. Yet only in the last 100 years have we identified, and closely studied, its key building block: the neuron. A highly specialized cell found in all but the simplest animals, like sponges, the neuron is one of the keys to understanding the brain.

Leading the Bionic Age

December 17, 2014 9:18 am | by Lindsay Hock, Managing Editor | Articles | Comments

The bionic age is no longer the workings of a far-fetched sci-fi movie; it’s here, now. We have experienced the first bionic eye and limbs. These technologies merge human capabilities with machines. They transform how we live, and who we are. They are improving quality of life. And there’s perhaps no greater example than R&D Magazine’s Innovator of the Year Prof. Hugh Herr.

Advertisement

Multidisciplinary and Collaborative R&D

December 17, 2014 9:00 am | by Tim Studt | Articles | Comments

Every year, in conjunction with the R&D 100 Awards Banquet, R&D Magazine’s editors convene a panel of R&D leaders to discuss the current issues confronting their organization’s R&D programs, staff and administration. This year’s panel was held on November 7, 2014, at the Bellagio, Las Vegas, Nev., and included three R&D managers from industry and one each from government and academic organizations.

Lowering Resistance

December 16, 2014 10:48 am | by Paul Livingstone | Articles | Comments

Magnetic sensing devices are an inextricable part of the global marketplace for electronic products. Nearly 6 billion units are shipped each year, and that number is rapidly growing along with electronics in general. Magnetic sensors have thousands of uses, and product designers can choose from three main types—reed, Hall-effect and magnetoresistive—to provide low-power, high-precision position sensing capability.

Researchers generate tunable photon-pair spectrum

December 16, 2014 9:14 am | by Univ. of California, San Diego | News | Comments

A team of researchers have demonstrated a way to emit and control quantum light generated using a chip made from silicon—one of the most widely used materials for modern electronics. The researchers say practical applications of quantum optics will seem more feasible if devices for generating and controlling these photons can be manufactured using conventional materials from the semiconductor industry.

Getting bot responders into shape

December 16, 2014 8:15 am | by Stephanie Holinka, Sandia National Laboratories | News | Comments

Sandia National Laboratories is tackling one of the biggest barriers to the use of robots in emergency response: energy efficiency. Through a project supported by DARPA, Sandia is developing technology that will dramatically improve the endurance of legged robots, helping them operate for long periods while performing the types of locomotion most relevant to disaster response scenarios.

All-electric cars may be worse for environment

December 16, 2014 8:02 am | by Associated Press, Seth Borenstein | News | Comments

People who own all-electric cars where coal generates the power may think they are helping the environment. But a new study finds their vehicles actually make the air dirtier, worsening global warming. Ethanol isn't so green, either. The study examines environmental costs for cars' entire lifecycle, including where power comes from and the environmental effects of building batteries.

Advertisement

The Next Big Things

December 15, 2014 3:38 pm | by Paul Livingstone | Articles | Comments

The Internet is a massive place, linking billions of devices which share data that should exceed the zettabyte mark by 2016. Even as data transfer grows, the number of devices connected to the Internet will soon experience a geometric rise as well.

New algorithm a Christmas gift to 3-D printing

December 15, 2014 2:23 pm | by Carol Thorbes, Univ. Communications, Simon Fraser Univ. | News | Comments

Just in time for Christmas, Simon Fraser Univ. computing science professor Richard Zhang reveals how to print a 3-D Christmas tree efficiently and with zero material waste, using the world’s first algorithm for automatically decomposing a 3-D object into what are called pyramidal parts. A pyramidal part has a flat base with the remainder of the shape forming upwards over the base with no overhangs, much like a pyramid.

Using liquid drops to make solids stiffer

December 15, 2014 2:13 pm | by Rase McCry, Yale Univ. | News | Comments

Engineers at Yale Univ. have discovered that the stiffness of liquid drops embedded in solids has something in common with Goldilocks: While large drops of liquids are softer than the solid that surrounds them, extremely tiny drops of liquid can actually be stiffer than certain solids. But when they’re “just right,” the liquid drops have the exact same stiffness as the surrounding solid.

Local market conditions, policies strongly influence solar PV pricing

December 15, 2014 2:03 pm | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Differences in local market conditions and policies, and other factors, particularly the size of the system, can lead to wide disparities in what consumers across the U.S. pay to install solar energy systems on their homes or small businesses, according to a recent study published by Lawrence Berkeley National Laboratory. This translates into thousands of dollars difference in the price of comparable solar energy systems around the U.S.

New findings could point the way to “valleytronics”

December 15, 2014 1:41 pm | by David L. Chandler, MIT News Office | News | Comments

New findings could provide a pathway toward a kind of 2-D microchip that would make use of a characteristic of electrons other than their electrical charge, as in conventional electronics. The new approach is dubbed “valleytronics,” because it makes use of properties of an electron that can be depicted as a pair of deep valleys on a graph of their traits.

Advertisement

Molecular “hats” allow in vivo activation of disguised signaling peptides

December 15, 2014 11:42 am | by John Toon, Georgia Institute of Technology | News | Comments

When someone you know is wearing an unfamiliar hat, you might not recognize them. Georgia Institute of Technology researchers are using just such a disguise to sneak biomaterials containing peptide signaling molecules into living animals. When the disguised peptides are needed to launch biological processes, the researchers shine ultraviolet light onto the molecules through the skin, causing the "hat" structures to come off.

How climate change could leave cities in the dark

December 15, 2014 11:30 am | by Jill Rosen, Johns Hopkins Univ. | News | Comments

Cities like Miami are all too familiar with hurricane-related power outages. But a Johns Hopkins Univ. analysis finds climate change will give other major metro areas a lot to worry about in the future. Johns Hopkins engineers created a computer model to predict the increasing vulnerability of power grids in major coastal cities during hurricanes.

Control on shape of light particles opens the way to quantum Internet

December 15, 2014 8:53 am | by Eindhoven Univ. of Technology | News | Comments

In the same way as we now connect computers in networks through optical signals, it could also be possible to connect future quantum computers in a quantum Internet. The optical signals would then consist of individual light particles or photons. One prerequisite for a working quantum Internet is control of the shape of these photons.

Engineering students aim to generate first breathable air on Mars

December 15, 2014 8:32 am | by The Univ. of Western Australia | News | Comments

A project by students from The Univ. of Western Australia and Mars One astronaut candidate Josh Richards has reached the finals of an international competition to land vital experiments on the Red Planet. The Helena Payload project, which aims to generate the first breathable air on Mars, is one of 10 finalists in the Mars One University Competition and is the only successful entry from the southern hemisphere.

3-D maps reveal the genome’s origami code

December 15, 2014 8:13 am | by Jade Boyd, Rice Univ. | Videos | Comments

In a triumph for cell biology, researchers have assembled the first high-resolution, 3-D maps of entire folded genomes and found a structural basis for gene regulation—a kind of “genomic origami” that allows the same genome to produce different types of cells. The research appears online in Cell.

Team combines logic, memory to build “high-rise” chip

December 15, 2014 7:49 am | by Tom Abate, Stanford Engineering | News | Comments

For decades, the mantra of electronics has been smaller, faster, cheaper. Today, Stanford Univ. engineers add a fourth word: taller. A Stanford team revealed how to build high-rise chips that could leapfrog the performance of the single-story logic and memory chips on today's circuit cards.

Nanoshaping method points to future manufacturing technology

December 12, 2014 7:00 am | News | Comments

A new method that creates large-area patterns of three-dimensional nanoshapes from metal sheets represents a potential manufacturing system to inexpensively mass produce innovations such as "plasmonic metamaterials" for advanced technologies.

Scientists measure speedy electrons in silicon

December 12, 2014 7:00 am | News | Comments

An international team of physicists and chemists based at UC Berkeley has, for the first time, taken snapshots of this ephemeral event using attosecond pulses of soft X-ray light lasting only a few billionths of a billionth of a second.                             

Baby steps toward molecular robots

December 11, 2014 8:32 am | News | Comments

A walking molecule, so small that it cannot be observed directly with a microscope, has been recorded taking its first nanometer-sized steps. It's the first time that anyone has shown in real time that such a tiny object – termed a "small molecule walker" – has taken a series of steps.

Meniscus regenerated with 3-D-printed implant

December 11, 2014 8:25 am | News | Comments

Researchers have devised a way to replace the knee’s protective lining, called the meniscus, using a personalized 3D-printed implant, or scaffold, infused with human growth factors that prompt the body to regenerate the lining on its own. The therapy, successfully tested in sheep, could provide the first effective and long-lasting repair of damaged menisci.

Physicists explain puzzling particle collisions

December 11, 2014 8:21 am | News | Comments

An anomaly spotted at the Large Hadron Collider has prompted scientists to reconsider a mathematical description of the underlying physics. By considering two forces that are distinct in everyday life but unified under extreme conditions like those within the collider and just after the birth of the universe, they have simplified one description of the interactions of elementary particles. 

‘High-entropy’ alloy is as light as aluminum, as strong as titanium alloys

December 11, 2014 8:09 am | News | Comments

Researchers have developed a new “high-entropy” metal alloy that has a higher strength-to-weight ratio than any other existing metal material. High-entropy alloys are materials that consist of five or more metals in approximately equal amounts. 

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading