Advertisement
Engineering
Subscribe to Engineering

The Lead

Microscopic sonic screwdriver invented

May 29, 2015 7:56 am | by Univ. of Bristol | News | Comments

A team of engineers have created tiny acoustic vortices and used them to grip and spin microscopic particles suspended in water. The researchers have shown that acoustic vortices act like tornados of sound, causing microparticles to rotate and drawing them to the vortex core. Like a tornado, what happens to the particles depends strongly on their size.

Researchers prove magnetism can control heat, sound

May 29, 2015 7:47 am | by Jamie Abel, Ohio Supercomputer Center | News | Comments

Phonons have magnetic properties. In Nature Materials, Ohio State Univ. researchers...

Designing less odorous latrines

May 28, 2015 11:37 am | by American Chemical Society | News | Comments

About 2.5 billion people worldwide don’t have access to sanitary toilets. Latrines are an option...

Paleontologists pioneer laser-beam scanning of dinosaur fossils

May 28, 2015 8:18 am | by Brendan Lynch, KU News Service | News | Comments

A team of scientists based largely at the Univ. of Kansas and the Burke Museum of Natural...

View Sample

FREE Email Newsletter

Breakthrough heralds super-efficient light-based computers

May 28, 2015 8:07 am | by Tom Abate, Stanford Engineering | News | Comments

Stanford Univ. electrical engineer Jelena Vuckovic wants to make computers faster and more efficient by reinventing how they send data back and forth between chips, where the work is done. In computers today, data is pushed through wires as a stream of electrons. That takes a lot of power, which helps explain why laptops get so warm.

Spinning a new version of silk

May 28, 2015 7:22 am | by David L. Chandler, MIT News Office | News | Comments

After years of research decoding the complex structure and production of spider silk, researchers have now succeeded in producing samples of this exceptionally strong and resilient material in the laboratory. The new development could lead to a variety of biomedical materials made from synthesized silk with properties specifically tuned for their intended uses.

Researchers develop intelligent handheld robots

May 27, 2015 11:41 am | by Univ. of Bristol | News | Comments

What if handheld tools know what needs to be done and were even able to guide and help inexperienced users to complete jobs that require skill? Researchers at the Univ. of Bristol have developed and started studying a novel concept in robotics: intelligent handheld robots.

Advertisement

Bioresorbable electronic stent could provide feedback, therapy

May 27, 2015 10:39 am | by American Chemical Society | News | Comments

Every year, an estimated half-million Americans undergo surgery to have a stent prop open a coronary artery narrowed by plaque. But sometimes the mesh tubes get clogged. Scientists report in ACS Nano a new kind of multi-tasking stent that could minimize the risks associated with the procedure. It can sense blood flow and temperature, store and transmit the information for analysis and can be absorbed by the body after it finishes its job.

Helping robots put it all together

May 27, 2015 9:28 am | by Larry Hardesty, MIT News Office | Videos | Comments

Today’s industrial robots are remarkably efficient, as long as they’re in a controlled environment where everything is exactly where they expect it to be. But put them in an unfamiliar setting, where they have to think for themselves, and their efficiency plummets. And the difficulty of on-the-fly motion planning increases exponentially with the number of robots involved.

Squeezed quantum cats

May 27, 2015 8:15 am | by Oliver Morsch, ETH Zurich | News | Comments

Quantum physics is full of fascinating phenomena. For example, the cat from the famous thought experiment by the physicist Erwin Schrodinger. The cat can be dead and alive at once, since its life depends on the quantum mechanically determined state of a radioactively decaying atom which, in turn, releases toxic gas into the cat's cage. As long as one hasn't measured the state of the atom, one knows nothing about the cat's health either.

Chip makes testing for antibiotic-resistant bacteria faster, easier

May 27, 2015 8:06 am | by RJ Taylor, Univ. of Toronto | News | Comments

We live in fear of superbugs: infectious bacteria that don't respond to treatment by antibiotics, and can turn a routine hospital stay into a nightmare. A 2015 Health Canada report estimates that superbugs have already cost Canadians $1 billion, and are a "serious and growing issue." Each year two million people in the U.S. contract antibiotic-resistant infections, and at least 23,000 people die as a direct result.

A new kind of wood chip

May 27, 2015 7:57 am | by John Steeno, Univ. of Wisconsin-Madison | News | Comments

Portable electronics are discarded at an alarming rate in consumers' pursuit of the next best electronic gadget. In an effort to alleviate the environmental burden of electronic devices, a team of Univ. of Wisconsin-Madison researchers has collaborated with researchers in the Madison-based U.S. Dept. of Agriculture Forest Products Laboratory to develop a surprising solution: a semiconductor chip made almost entirely of wood.

Advertisement

Seeing the action

May 27, 2015 7:47 am | by Sonia Fernandez, Univ. of California, Santa Barbara | News | Comments

Cells are biological wonders. Throughout billions of years of existence on Earth, these tiny units of life have evolved to collaborate at the smallest levels in promoting, preserving and protecting the organism they comprise. Among these functions is the transport of lipids and other biomacromolecules between cells via membrane adhesion and fusion.

Chip placed under skin provides precise medicine

May 27, 2015 7:39 am | by EPFL | News | Comments

The future of medicine lies in ever greater precision, not only when it comes to diagnosis but also drug dosage. The blood work that medical staff rely on is generally a snapshot indicative of the moment the blood is drawn before it undergoes hours, or even days, of analysis. Several EPFL laboratories are working on devices allowing constant analysis over as long a period as possible.

One step closer to a single-molecule device

May 26, 2015 10:57 am | by Columbia Univ. | News | Comments

Under the direction of Latha Venkataraman, associate professor of applied physics at Columbia Engineering, researchers have designed a new technique to create a single-molecule diode, and, in doing so, they have developed molecular diodes that perform 50 times better than all prior designs. Venkataraman's group is the first to develop a single-molecule diode that may have real-world technological applications for nanoscale devices.

Fine-tuned molecular orientation is key to more efficient solar cells

May 26, 2015 10:19 am | by RIKEN | News | Comments

Polymer solar cells are a hot area of research due to both their strong future potential and the significant challenges they pose. It is believed that thanks to lower production costs, they could become a viable alternative to conventional solar cells with silicon substrates when they achieve a power conversion efficiency of between 10 and 15%.

Advance in quantum error correction

May 26, 2015 7:25 am | by Larry Hardesty, MIT News Office | News | Comments

Quantum computers are largely theoretical devices that could perform some computations exponentially faster than conventional computers can. Crucial to most designs for quantum computers is quantum error correction, which helps preserve the fragile quantum states on which quantum computation depends.

Advertisement

Robot masters new skills through trial-and-error

May 22, 2015 10:04 am | by Sarah Yang, Univ. of California, Berkeley | Videos | Comments

Univ. of California, Berkeley researchers have developed algorithms that enable robots to learn motor tasks through trial and error using a process that more closely approximates the way humans learn, marking a major milestone in the field of artificial intelligence. They demonstrated their technique, a type of reinforcement learning, by having a robot complete various tasks without pre-programmed details about its surroundings.

Cooling the cloud

May 22, 2015 8:34 am | by Binghamton Univ. | News | Comments

Data centers are one of the largest and fastest-growing consumers of electricity in the U.S. The industry has been shifting from open-air cooling of these facilities to increasingly complex systems that segregate hot air from cold air. When it comes to cost savings, there are definite advantages to the aisle containment systems, which have been estimated to save 30% of cooling energy.

Mars Rover’s ChemCam gets sharper vision

May 22, 2015 7:51 am | by Nancy Amrbosiano, Los Alamos National Laboratory | News | Comments

NASA’s Mars Curiosity Rover’s ChemCam instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument. The team realized last November that a small laser used to focus the ChemCam telescope on its target fialed. And without this laser rangefinder, the instrument was blind.

Mission possible: This device will self-destruct when heated

May 21, 2015 3:06 pm | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | Videos | Comments

Where do electronics go when they die? Most devices are laid to eternal rest in landfills. But what if they just dissolved away, or broke down to their molecular components so that the material could be recycled? Univ. of Illinois researchers have developed heat-triggered self-destructing electronic devices, a step toward greatly reducing electronic waste and boosting sustainability in device manufacturing.

New class of magnets could energize the world

May 21, 2015 10:30 am | by Temple Univ. | News | Comments

A new class of magnets that expand their volume when placed in a magnetic field and generate negligible amounts of wasteful heat during energy harvesting, has been discovered by researchers at Temple Univ. and the Univ. of Maryland. This transformative breakthrough has the potential to not only displace existing technologies but create altogether new applications due to the unusual combination of magnetic properties.

Technology could change future wireless communications

May 21, 2015 10:22 am | by Univ. of Bristol | News | Comments

Radio systems, such as mobile phones and wireless Internet connections, have become an integral part of modern life. However, today's devices use twice as much of the radio spectrum as is necessary. New technology is being developed that could fundamentally change radio design and could increase data rates and network capacity, reduce power consumption, create cheaper devices and enable global roaming.

Simulations predict flat liquid

May 21, 2015 10:11 am | by Academy of Finland | News | Comments

Computer simulations have predicted a new phase of matter: atomically thin 2-D liquid. This prediction pushes the boundaries of possible phases of materials further than ever before. Two-dimensional materials themselves were considered impossible until the discovery of graphene around 10 years ago.

Designing microwave devices from scratch

May 21, 2015 10:03 am | by Umea Univ. | News | Comments

For decades, the fundamental design of microwave devices, such as antennas for mobile communication and waveguides used in radars, has essentially relied on the inventiveness of a professional designer. Computer simulations are usually used only in final design stages to fine-tune details in the design.

Shape-shifting plastic

May 21, 2015 8:18 am | by Morgan McCorkle, Oak Ridge National Laboratory | Videos | Comments

Not all plastics are created equal. Malleable thermoplastics can be easily melted and reused in products such as food containers. Other plastics, called thermosets, are essentially stuck in their final form because of cross-linking chemical bonds that give them their strength for applications such as golf balls and car tires.

How to make continuous rolls of graphene

May 21, 2015 7:30 am | by David L. Chandler, MIT News Office | News | Comments

Graphene is a material with a host of potential applications, including in flexible light sources, solar panels that could be integrated into windows and membranes to desalinate and purify water. But all these possible uses face the same big hurdle: the need for a scalable and cost-effective method for continuous manufacturing of graphene films.

NASA advances CubeSat concept for planetary exploration

May 20, 2015 8:08 am | by NASA Goddard Space Flight Center | News | Comments

Although scientists are increasingly using pint-size satellites sometimes no larger than a loaf of bread to gather data from low-Earth orbit, they have yet to apply the less-expensive small-satellite technology to observe physical phenomena far from terra firma. Jaime Esper, a technologist at NASA's Goddard Space Flight Center in Greenbelt, Md., however, is advancing a CubeSat concept that would give scientists that capability.

Seashell strength inspires stress tests

May 20, 2015 7:43 am | by Mike Williams, Rice Univ. | News | Comments

Mollusks got it right. They have soft innards, but their complex exteriors are engineered to protect them in harsh conditions. Engineers at the Indian Institute of Science and Rice Univ. are beginning to understand why. By modeling the average mollusk’s mobile habitat, they are learning how shells stand up to extraordinary pressures at the bottom of the sea.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading