Advertisement
Engineering
Subscribe to Engineering

The Lead

Uncrackable code developed for nuclear weapons

November 20, 2014 10:07 am | by Breanna Bishop, Lawrence Livermore National Laboratory | Videos | Comments

Mark Hart, a scientist and engineer at Lawrence Livermore National Laboratory, has been awarded the 2015 Surety Transformation Initiative (STI) Award from the National Nuclear Security Administration’s Enhanced Surety Program. The STI award aims to stimulate and encourage the development of potentially transformational nuclear weapon surety technologies and explore innovative, preferably monumental shift solutions, to unmet surety needs.

Novel polarizing filter transits more light

November 20, 2014 9:29 am | by Univ. of Utah | News | Comments

Univ. of Utah engineers have developed a polarizing filter that allows in more light, leading...

New technology may speed up, build awareness of landslide risks

November 20, 2014 9:18 am | by David Stauth, Oregon State Univ. | News | Comments

Engineers have created a new way to use lidar technology to identify and classify landslides on...

Could hydrogen vehicles take over as the “green” car of choice?

November 20, 2014 7:59 am | by American Chemical Society | News | Comments

Now that car makers have demonstrated through hybrid vehicle success that consumers want less-...

View Sample

FREE Email Newsletter

“Cloaking” device uses ordinary lenses to hide objects across range of angles

November 20, 2014 7:51 am | by Univ. of Rochester | News | Comments

Inspired perhaps by Harry Potter's invisibility cloak, scientists have recently developed several ways to hide objects from view. The latest effort, developed at the Univ. of Rochester, not only overcomes some of the limitations of previous devices, but it uses inexpensive, readily available materials in a novel configuration.

“Carpe Datem”: Seizing the Opportunities of Big Data to Drive Insight

November 19, 2014 2:05 pm | by Roger Schenck, Manager, Content Promotions, Chemical Abstracts Service (CAS) | Articles | Comments

Carpe diem…seize the day. This Latin phrase, coined by the Roman poet Horace in 23 BC, is used often to encourage us to take full advantage of the opportunities each day provides. In modern times with seemingly limitless amounts of data on any conceivable subject available at our fingertips, organizations globally are developing strategies to leverage this growing data volume to enhance business success.

Unleashing the Power of 3-D Printing: Designing for Additive Manufacturability

November 19, 2014 1:44 pm | by Bill Camuel, Project Engineering Manager, RedEye | Articles | Comments

Additive manufacturing, widely known as 3-D printing, offers many advantages over traditional manufacturing methods such as injection molding and machining, which limit a part’s geometry and size. By freeing manufacturers from these design constraints, additive manufacturing helps create complex parts that spark innovation and save companies time and money.

Advertisement

Streamlining thin-film processing saves time, energy

November 19, 2014 9:41 am | by South Dakota State University Communications Center | News | Comments

Energy storage devices and computer screens may seem worlds apart, but they're not. When Assoc. Prof. Qi Hua Fan set out to make a less expensive supercapacitor for storing renewable energy, he developed a new plasma technology that will streamline the production of display screens.

Research advances understanding of atomically thin crystal growth

November 19, 2014 9:24 am | by David Goddard, UT Knoxville | News | Comments

Univ. of Tennessee, Knoxville’s College of Engineering has made recent headlines for discoveries that, while atomically small, could impact our modern world. The team focused on the role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy.

Computer model sets new precedent in drug discovery

November 19, 2014 8:52 am | by Kat J. McAlpine, Wyss Institute for Biologically Inspired Engineering | Videos | Comments

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects—a challenge that has largely been addressed through costly guess–and–check experiments. Researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard Univ. offer a new approach.

Running the color gamut

November 19, 2014 8:01 am | by Rob Matheson, MIT News Office | News | Comments

If LCD TVs get more colorful in the next few years, it will probably be thanks to QD Vision, a pioneer of quantum-dot television displays. Quantum dots are light-emitting semiconductor nanocrystals that can be tuned to emit all colors across the visible spectrum. By tuning these dots to red and green, and using a blue backlight to energize them, QD Vision has developed an optical component that can boost the color gamut for LCD televisions.

A new portrait of carbon dioxide

November 18, 2014 9:36 am | by Patrick Lynch, NASA's Goddard Space Flight Center | Videos | Comments

An ultra-high-resolution NASA computer model has given scientists a stunning new look at how carbon dioxide in the atmosphere travels around the globe. Plumes of carbon dioxide in the simulation swirl and shift as winds disperse the greenhouse gas away from its sources. The simulation also illustrates differences in carbon dioxide levels in the northern and southern hemispheres.

Advertisement

New acoustic sensor developed for chemical, biological detection

November 18, 2014 9:14 am | by Jared Sagoff, Argonne National Laboratory | News | Comments

Testing for ovarian cancer or the presence of a particular chemical could be almost as simple as distinguishing an F sharp from a B flat, thanks to a new microscopic acoustic device that has been dramatically improved by scientists at Argonne National Laboratory. The device, known as a surface acoustic wave (SAW) sensor, detects frequency changes in waves that propagate through its crystalline structure.

Two sensors in one

November 18, 2014 8:10 am | by Anne Trafton, MIT News Office | News | Comments

Massachusetts Institute of Technology chemists have developed new nanoparticles that can simultaneously perform magnetic resonance imaging (MRI) and fluorescent imaging in living animals. Such particles could help scientists to track specific molecules produced in the body, monitor a tumor’s environment, or determine whether drugs have successfully reached their targets.

Researchers create, control spin waves

November 18, 2014 7:50 am | by James Devitt, New York Univ. | News | Comments

A team of New York Univ. and Univ. of Barcelona physicists has developed a method to control the movements occurring within magnetic materials, which are used to store and carry information. The breakthrough could simultaneously bolster information processing while reducing the energy necessary to do so.

Advance in cryopreservation could change management of world blood supplies

November 17, 2014 3:58 pm | by David Stauth, Oregon State Univ. | News | Comments

Engineers at Oregon State Univ. have identified a method to rapidly prepare frozen red blood cells for transfusions, which may offer an important new way to manage the world’s blood supply. It’s already possible to cryopreserve human red blood cells in the presence of 40% glycerol, but is rarely done because of the time-consuming process to thaw and remove the glycerol from the blood.

Mixing light at the nanoscale

November 17, 2014 3:46 pm | by Evan Lerner, Univ. of Pennsylvania | News | Comments

The race to make computer components smaller and faster and use less power is pushing the limits of the properties of electrons in a material. Photonic systems could eventually replace electronic ones, but the fundamentals of computation, mixing two inputs into a single output, currently require too much space and power when done with light.

Advertisement

Artificial muscle can “remember” movements

November 17, 2014 11:07 am | by Univ. of Cambridge | News | Comments

Researchers from the Univ. of Cambridge have developed artificial muscles which can learn and recall specific movements, the first time that motion control and memory have been combined in a synthetic material. The muscles, made from smooth plastic, could eventually be used in a applications where mimicking the movement of natural muscle would be an advantage, such as robotics, aerospace, exoskeletons and biomedical applications.

Spiral laser beam creates quantum whirlpool

November 17, 2014 10:24 am | by Australian National Univ. | News | Comments

Physicists at Australian National Univ. have engineered a spiral laser beam and used it to create a whirlpool of hybrid light-matter particles called polaritons. The ability to control polariton flows in this way could aid the development of completely novel technology to link conventional electronics with new laser and fiber-based technologies.

Efficient method developed to measure residual stress in 3-D printed parts

November 17, 2014 10:08 am | by Kenneth Ma, LLNL | News | Comments

Lawrence Livermore National Laboratory researchers have developed an efficient method to measure residual stress in metal parts produced by powder-bed fusion additive manufacturing. This 3-D printing process produces metal parts layer by layer using a high-energy laser beam to fuse metal powder particles.

Artificial intelligence magic tricks

November 17, 2014 8:46 am | by Queen Mary Univ. of London | Videos | Comments

Researchers from the Queen Mary Univ. of London gave a computer program the outline of how a magic jigsaw puzzle and a mind-reading card trick work, as well the results of experiments into how humans understand magic tricks, and the system created completely new variants on those tricks which can be delivered by a magician.

New method for methanol processing could reduce carbon dioxide emissions

November 17, 2014 8:33 am | by Matthew Chin, Univ. of California, Los Angeles | News | Comments

Researchers at the Univ. of California, Los Angeles Henry Samueli School of Engineering and Applied Science have developed a more efficient way to turn methanol into useful chemicals, such as liquid fuels, and that would also reduce carbon dioxide emissions. Methanol, which is a product of natural gas, is well-known as a common “feedstock” chemical.

Lighting the way for future electronic devices

November 17, 2014 8:15 am | by Univ. of Southampton | News | Comments

Researchers at the Univ. of Southampton have demonstrated how glass can be manipulated to create electronic devices that will be smaller, faster and consume less power. The researchhas the potential to allow faster, more efficient electronic devices; further shrinking the size of our phones, tablets and computers and reducing their energy consumption by turning waste heat into power.

Researchers discern the shapes of high-order Brownian motions

November 17, 2014 7:57 am | by Case Western Reserve Univ. | News | Comments

For the first time, scientists have vividly mapped the shapes and textures of high-order modes of Brownian motions—in this case, the collective macroscopic movement of molecules in microdisk resonators—researchers at Case Western Reserve Univ. report. To do this, they used a record-setting scanning optical interferometry technique.

Motion-induced quicksand

November 17, 2014 7:45 am | by Jennifer Chu, MIT News Office | News | Comments

From a mechanical perspective, granular materials are stuck between a rock and a fluid place, with behavior resembling neither a solid nor a liquid. Think of sand through an hourglass: As grains funnel through, they appear to flow like water, but once deposited, they form a relatively stable mound, much like a solid.

Evolution of NIR Spectroscopy: Past, Present and Future

November 14, 2014 4:04 pm | by Joe Siddall, TI DLP Embedded Products Program Manager | Articles | Comments

Near-infrared (NIR) spectrometers have been around for over 60 years, yet only a small fraction of the population is familiar with these dependable tools. It’s astounding that NIR spectroscopy does so much for so many people who have never heard the word “spectrometer.” NIR spectrometers help a diverse set of users make decisions in their daily jobs.

LLNL, IBM to deliver next-generation supercomputer

November 14, 2014 11:01 am | by Lynda L. Seaver, Lawrence Livermore National Laboratory | News | Comments

Lawrence Livermore National Laboratory (LLNL) announced a contract with IBM to deliver a next-generation supercomputer in 2017. The system, to be called Sierra, will serve the National Nuclear Security Administration’s Advanced Simulation and Computing program. Procurement of Sierra is part of a DOE-sponsored Collaboration of Oak Ridge, Argonne and Lawrence Livermore national labs to accelerate the development of high-performance computing.

New form of crystalline order holds promises for thermoelectric applications

November 14, 2014 9:36 am | by Vanderbilt Univ. | News | Comments

Since the 1850s scientists have known that crystalline materials are organized into fourteen different basic lattice structures. However, a team of researchers from Vanderbilt Univ. and Oak Ridge National Laboratory now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as "interlaced crystals."

Test developed for rapid diagnosis of bloodstream infection

November 14, 2014 8:20 am | by Univ. of California, Irvine | News | Comments

A new bloodstream infection test created by Univ. of California, Irvine researchers can speed up diagnosis times with unprecedented accuracy, allowing physicians to treat patients with potentially deadly ailments more promptly and effectively. The technology, called Integrated Comprehensive Droplet Digital Detection, or IC 3D, can detect bacteria in milliliters of blood with single-cell sensitivity in 90 mins; no cell culture is needed.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading