Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Opening a wide window on the nano-world of surface catalysis

June 6, 2014 10:20 am | by Steven Powell, Univ. of South Carolina | News | Comments

Surface catalysts are notoriously difficult to study mechanistically, but scientists at two universities have recently shown how to get real-time reaction information from silver nanocatalysts that have long frustrated attempts to describe their kinetic behavior in detail. The key to the team's success was bridging a size gap that had represented a wide chasm to researchers in the past.

All-natural mixture yields promising fire retardant

June 6, 2014 9:29 am | News | Comments

A dash of clay, a dab of fiber from crab shells, and a dollop of DNA: This strange group of materials are actually the ingredients of promising green fire retardants invented by researchers at NIST. Applied to polyurethane foam, the bio-based coatings greatly reduced the flammability of the common furniture padding after it was exposed to an open flame.

Researchers find mechanism that forms cell-to-cell catch bonds

June 6, 2014 9:09 am | News | Comments

Certain bonds connecting biological cells get stronger when they’re tugged. Those bonds are known as catch bonds and they’re formed by common adhesion proteins called cadherins. Using computer simulations based on data from previous experiments, researchers in Iowa have answered the question about how these bonds get stronger under force.

Advertisement

Researchers discover how water molecules adapt to presence of extra proton

June 6, 2014 8:02 am | by Eric Gershon, Yale Univ. | News | Comments

H2O is the molecule everybody knows, and nobody can live without. But for all its familiarity and import for life, aspects of water’s behavior have been hard to pin down, including how it conducts positive charge. In Science, Yale Univ. chemists report tracing how a cluster of water molecules adapts to the presence of an extra proton, the positively charged subatomic particle.

Ionic liquid boosts efficiency of carbon dioxide reduction catalyst

June 6, 2014 7:50 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Wouldn’t it be nice to use solar- or wind-generated electricity to turn excess carbon dioxide into fuels and other useful chemicals? The process would store up the intermittent solar or wind energy in a form that could be used when and where it was needed, including in transportation applications, all while getting rid of some greenhouse gas.

Engineers develop mobile DNA test for HIV

June 6, 2014 7:31 am | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. bioengineers are developing a simple, highly accurate test to detect signs of HIV and its progress in patients in resource-poor settings. The current gold standard to diagnose HIV in infants and to monitor viral load depends on laboratory equipment and technical expertise generally available only in clinics. The new research features a nucleic acid-based test that can be performed at the site of care.

Preserving bread longer: A new edible film made with essential oils

June 5, 2014 11:18 am | News | Comments

Essential oils have boomed in popularity as people seek alternatives to replace their synthetic cleaning products, anti-mosquito sprays and medicines. Now scientists are tapping them as candidates to preserve food in a more consumer-friendly way. A study from the Journal of Agricultural and Food Chemistry reports the development of new edible films containing oils from clove and oregano that preserve bread longer than commercial additives.

Cleaning the air with roof tiles

June 4, 2014 3:08 pm | by Sean Nealon, UC Riverside | News | Comments

A team of students in California have created a roof tile coating that, when applied to an average-sized residential roof, breaks down the same amount of smog-causing nitrogen oxides per year as a car driven 11,000 miles. The inexpensive titanium dioxide-based coating removes up to 97% of smog-causing nitrogen oxides.

Advertisement

Quantum criticality observed in new class of materials

June 4, 2014 2:39 pm | by Jade Boyd, Rice Univ. | News | Comments

Quantum criticality, the strange electronic state that may be intimately related to high-temperature superconductivity, is notoriously difficult to study. But a new discovery of “quantum critical points” could allow physicists to develop a classification scheme for quantum criticality, the first step toward a broader explanation.

Easier, Safer Pipetting Promotes Health and Productivity

June 4, 2014 1:21 pm | by Noah Saederup, PhD, Product Manager, Mettler Toledo Int. Inc., Oakland, Calif. | Articles | Comments

Investigations into long-term health consequences associated with pipetting were first made in the 1980s. Today, pipettes are typically designed with ergonomics in mind—but the right solution for one may not be the right solution for all. Considering body type and workstation design, in addition to pipette features, can result in greater ease, fewer errors and better throughput.

Breakthrough greatly strengthens graphene-reinforced composites

June 4, 2014 10:07 am | News | Comments

Haydale, a U.K.-based developer of a unique plasma functionalization process for nanomaterials, has announced the publication of research showing its functionalized graphene nanoplatelets significantly improve the nanoscale reinforcement of resin. The report states a greater than two times increase in tensile strength and modulus of an epoxy composite using this technology.

Preserving bread longer: A new edible film made with essential oils

June 4, 2014 9:59 am | News | Comments

Essential oils have boomed in popularity as more people seek out alternatives to replace their synthetic cleaning products, anti-mosquito sprays and medicines. Now scientists are tapping them as candidates to preserve food in a more consumer-friendly way. Recent research has led to new edible films containing oils from clove and oregano that preserve bread longer than commercial additives.

Controlling thermal conductivities can improve energy storage

June 4, 2014 7:30 am | by Rick Kubetz, Univ. of Illinois | News | Comments

Materials that control heat flow are available with both high and low conductivities, but materials with variable and reversible thermal conductivities are rare. For the first time, researchers at the Univ. of Illinois have experimentally shown that the thermal conductivity of lithium cobalt oxide, an important material for electrochemical energy storage, can be reversibly electrochemically modulated over a considerable range.

Advertisement

Rice Univ. produces carbon-capture breakthrough

June 4, 2014 7:14 am | News | Comments

A porous material invented by the Rice Univ. lab of chemist James Tour sequesters carbon dioxide, a greenhouse gas, at ambient temperature with pressure provided by the wellhead and lets it go once the pressure is released. The material shows promise to replace more costly and energy-intensive processes.

Discovery sheds light on how to control self-assembly process

June 3, 2014 8:35 am | News | Comments

Imagine a tower that builds itself into the desired structure only by choosing the appropriate bricks. Absurd, but in the nano world self-assembly is now a common practice for forming structures. Researchers in Austria have been investigating how they can control the ordering of self-assembling structures and discovered how to switch the assembly process on and off.

The hunt for white aluminium

May 30, 2014 10:29 am | by Katrine Krogh-Jeppesen, DTU | News | Comments

Bang & Olufsen is working with scientists in Denmark to develop a method for creating white aluminium surfaces. This has been exceedingly difficult for manufacturers because the existing technology used to color aluminium cannot be used to produce the color white because the molecules used to create “white” are too big. Rather than use pigments, then, researchers have a way to make it become white during the process.

Smart coating could make oil spill cleanup faster, more efficient

May 30, 2014 9:30 am | News | Comments

In the wake of recent offshore oil spills, and with the growing popularity of “fracking”—in which water is used to release oil and gas from shale—there’s a need for easy, quick ways to separate oil and water. Now, scientists have developed coatings that can do just that. Their report on the materials, which also could stop surfaces from getting foggy and dirty, appears in ACS Applied Materials & Interfaces.

Unexpected water explains surface chemistry of nanocrystals

May 30, 2014 8:35 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

A team at Lawrence Berkeley National Laboratory found unexpected traces of water in semiconducting nanocrystals. The water as a source of small ions for the surface of colloidal lead sulfide nanoparticles allowed the team to explain just how the surface of these important particles are passivated, meaning how they achieve an overall balance of positive and negative ions.

Stabilizing common semiconductors for solar fuels generation

May 30, 2014 8:17 am | by Kimm Fesenmaier, Caltech | News | Comments

Researchers are trying to develop solar-driven generators that can split water, yielding hydrogen gas that could be used as clean fuel. Such a device requires efficient light-absorbing materials that attract and hold sunlight to drive the chemical reactions involved in water splitting. Semiconductors are excellent light absorbers. However, these materials rust when submerged in the type of water solutions found in such systems.

New reference to enable better petrochemical catalysts

May 29, 2014 11:51 am | by Fabio Bergamin, ETH Zurich | News | Comments

When crude oil is refined to fuels and chemicals, catalysts such as zeolites. are at work making this process happen. Scientists have recently developed a reference parameter for the performance of this important class of catalysts, which can suffer from production hindrances if reaction side products clog pores or block active sites on the catalyst.

Miniature gas chromatograph could help farmers detect crop diseases earlier

May 29, 2014 7:55 am | by Angela Colar, Georgia Tech | News | Comments

Researchers at the Georgia Tech Research Institute are developing a micro gas chromatograph for early detection of diseases in crops. About the size of a 9-V battery, the technology’s portability could give farmers just the tool they need to quickly evaluate the health of their crops and address any possible threats immediately, potentially increasing yield by reducing crop losses.

A more Earth-friendly way to make bright white cotton fabrics

May 29, 2014 7:44 am | News | Comments

With a growing number of consumers demanding more earth-friendly practices from the fashion world, scientists are developing new ways to produce textiles that could help meet rising expectations. They report in Industrial & Engineering Chemistry Research one such method that can dramatically reduce the amount of energy it takes to bleach cotton while improving the quality of the popular material.

Direct observations offer a new solution to desorption calculations

May 28, 2014 11:41 am | News | Comments

In recent research in Germany, the desorption of oxygen molecules from a silver surface was successfully visualized for the first time using low-energy electron microscopy. The effects account for the shortcomings of conventional models of desorption, which often deliver rates that do not agree with experimentally determined values.

Sneaky bacteria change key protein’s shape to escape detection

May 28, 2014 10:23 am | News | Comments

Every once in a while in the U.S., bacterial meningitis seems to crop up out of nowhere, claiming a young life. Part of the disease’s danger is the ability of the bacteria to evade the body’s immune system, but scientists are now figuring out how the pathogen hides in plain sight. Their findings, which could help defeat these bacteria and others like it, appear in the Journal of the American Chemical Society.

New method discovered to protect against chemical weapons

May 27, 2014 3:13 pm | News | Comments

Researchers at Oregon State Univ. have discovered that some compounds called polyoxoniobates can degrade and decontaminate nerve agents such as the deadly sarin gas, and have other characteristics that may make them ideal for protective suits, masks or other clothing. The use of polyoxoniobates for this purpose had never before been demonstrated, and the discovery could have important implications for both military and civilian protection.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading