Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Faster anthrax detection could speed bioterror response

February 27, 2014 12:47 pm | News | Comments

Shortly following the 9/11 terror attack in 2001, letters containing anthrax spores were mailed to news outlets and government buildings killing five people and infecting 17 others. According to a 2012 report, the bioterrorism event cost $3.2 million in cleanup and decontamination. At the time, no testing system was in place that officials could use to screen the letters.

Still-fresh remnants of Exxon Valdez oil protected by boulders

February 27, 2014 11:21 am | News | Comments

Twenty-five years after the infamous Exxon Valdez oil spill in Prince William Sound, beaches on the Alaska Peninsula hundreds of kilometers from the incident still harbor small hidden pockets of surprisingly unchanged oil, according to new research being presented at the American Geophysical Union meeting in Hawaii this week.

Study: New gas-phase compounds form organic particle ingredients

February 27, 2014 10:51 am | News | Comments

So-called extremely low-volatility organic compounds, which are produced by plants, have been detected for the first time during field and laboratory experiments in Finland and Germany. The results may help to explain discrepancies between observations and theories about how volatile organic compounds produced by vegetation are converted into atmospheric aerosol. This in turn should improve existing climate models.

Advertisement

MSU advances algae’s viability as a biofuel

February 26, 2014 10:05 am | News | Comments

Laboratory success doesn’t always translate to real-world success. A team of Michigan State Univ. scientists, however, has invented a new technology that increases the odds of helping algae-based biofuels cross that gap and come closer to reality. The environmental photobioreactor (ePBR) system is the world’s first standard algae growing platform, one that simulates dynamic natural environments.

New special air filter blocks small particles from getting inside cars

February 25, 2014 9:31 am | News | Comments

While taking in the scenery during long road trips, passengers also may be taking in potentially harmful ultrafine particles (UFPs) that come into the car through outdoor air vents. Closing the vents reduces UFPs, but causes exhaled carbon dioxide to build up. Now, scientists have developed a high-efficiency cabin air filter that could reduce UFP exposure by 93% and keep carbon dioxide levels low.

Team converts sugarcane to a cold-tolerant, oil-producing crop

February 24, 2014 11:23 am | by Diana Yates, Univ. of Illinois | News | Comments

A multi-institutional team reports that it can increase sugarcane’s geographic range, boost its photosynthetic rate by 30% and turn it into an oil-producing crop for biodiesel production. These are only the first steps in a bigger initiative that will turn the highly productive sugarcane and sorghum crop plants into even more productive, oil-generating plants.

Microanalysis technique makes the most of small nanoparticle samples

February 24, 2014 10:31 am | News | Comments

Researchers from NIST and the FDA have demonstrated that they can make sensitive chemical analyses of minute samples of nanoparticles by, essentially, roasting them on top of a quartz crystal. The NIST-developed technique, "microscale thermogravimetric analysis," holds promise for studying nanomaterials in biology and the environment, where sample sizes often are quite small and larger-scale analysis won't work.

Nanotechnology in glass sponge

February 24, 2014 9:54 am | News | Comments

To attach itself to surfaces, the marine sponge Monorhaphis chuni forms an unusual glass rod. Researchers have recently analyzed the nanostructure of the filament passing through the center of this glass rod and discovered that it is formed with a perfect periodic arrangement of nanopores. In this way, the sponge employs a similar method that is now used for fabrication of man-made mesoporous nanomaterials.

Advertisement

Team develops chemical solution for graphene challenges

February 24, 2014 9:15 am | News | Comments

Previous efforts to create graphene nanoribbons followed a top-down approach, using lithography and etching process to try to cut ribbons out of graphene sheets. Cutting ribbons 2 nm-wide is not practical, however, and these efforts have not been very successful. Now, a research team has developed a chemical approach to mass producing these graphene nanoribbons. This process that may provide an avenue to harnessing graphene's conductivity.

New, inexpensive production materials boost promise of hydrogen fuel

February 24, 2014 8:36 am | by Chris Barncard, Univ. of Wisconsin-Madison | News | Comments

Generating electricity is not the only way to turn sunlight into energy we can use on demand. The sun can also drive reactions to create chemical fuels, such as hydrogen, that can in turn power cars and trains. The trouble with solar fuel production is the cost of producing the sun-capturing semiconductors and the catalysts to generate fuel.

Building artificial cells will be a noisy business

February 24, 2014 8:09 am | by Cynthia Eller, California Institute of Technology | News | Comments

Engineers like to make things that work. And if one wants to make something work using nanoscale components, the size of proteins, antibodies and viruses, mimicking the behavior of cells is a good place to start since cells carry an enormous amount of information in a very tiny packet.

Nanotracer tester tells about wells

February 24, 2014 7:55 am | News | Comments

A tabletop device invented at Rice Univ. can tell how efficiently a nanoparticle would travel through a well and may provide a wealth of information for oil and gas producers. The device gathers data on how tracers, microscopic particles that can be pumped into and recovered from wells, move through deep rock formations that have been opened by hydraulic fracturing.

Tracking catalytic reactions in microreactors

February 21, 2014 11:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A pathway to more effective and efficient synthesis of pharmaceutical drugs and other flow reactor chemical products has been opened by a study in which, for the first time, the catalytic reactivity inside a microreactor was mapped in high resolution from start-to-finish. The results not only provided a better understanding of the chemistry behind the catalytic reactions, they also revealed opportunities for optimization.

Advertisement

New chemistry could make it easier to design materials to order

February 21, 2014 10:59 am | News | Comments

Researchers in the U.K. have developed a method of controlling the composition of a range of polymers, the large molecules that are commonly used as plastics and fibers. They have demonstrated how the chemical reactions can be manipulated, especially in fixing the composition of a polymer using a mixture of up to three different monomers. The secret lies in understanding and switching “on” and “off” the catalyst used to make the polymers.

Long non-coding RNAs help genes get out of the starting block faster

February 21, 2014 7:43 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Yeast can quickly adapt to changes in its environment with the help of molecules known as long non-coding RNAs, a Purdue Univ. study shows. The team of researchers found that long non-coding RNAs prepare metabolic genes to be activated swiftly when baker's yeast needs to switch its source of energy from glucose to an alternative sugar, galactose.

Microscopy system delivers real-time view of battery electrochemistry

February 19, 2014 3:17 pm | News | Comments

Using a new microscopy method, researchers at Oak Ridge National Laboratory (ORNL) can image and measure electrochemical processes in batteries in real time and at nanoscale resolution. Scientists at ORNL used a miniature electrochemical liquid cell that is placed in a transmission electron microscope to study an enigmatic phenomenon in lithium-ion batteries called the solid electrolyte interphase.

Research: U.K. failing to harness its bioenergy potential

February 19, 2014 10:26 am | by Aeron Haworth, Media Relations, The Univ. of Manchester | News | Comments

The U.K. could generate almost half its energy needs from biomass sources, including household waste, agricultural residues and home-grown biofuels by 2050, new research suggests. Scientists from the Tyndall Centre for Climate Change Research at The Univ. of Manchester found that the U.K. could produce up to 44% of its energy by these means without the need to import.

Solar-induced hybrid fuel cell produces electricity directly from biomass

February 19, 2014 7:45 am | by John Toon, Georgia Institute of Technology | News | Comments

Although low-temperature fuel cells powered by methanol or hydrogen have been well studied, existing low-temperature fuel cell technologies can’t directly use biomass as a fuel because of the lack of an effective catalyst system for polymeric materials. Now, researchers have developed a new type of low-temperature fuel cell that directly converts biomass to electricity with assistance from a catalyst activated by solar or thermal energy.

Researchers warn against abrupt stop to geoengineering method

February 18, 2014 11:03 am | News | Comments

As a range of climate change mitigation scenarios are discussed, Univ. of Washington researchers have found that the injection of sulfate particles into the atmosphere to reflect sunlight and curb the effects of global warming could pose a severe threat if not maintained indefinitely and supported by strict reductions in greenhouse gas emissions.

Artificial leaf jumps developmental hurdle

February 18, 2014 11:00 am | News | Comments

In a recent early online edition of Nature Chemistry, Arizona State Univ. scientists, along with colleagues at Argonne National Laboratory, have reported advances toward perfecting a functional artificial leaf. Designing an artificial leaf that uses solar energy to convert water cheaply and efficiently into hydrogen and oxygen is one of the goals of BISfuel.

Pomegranate-inspired design solves problems for lithium-ion batteries

February 18, 2014 8:46 am | News | Comments

An electrode designed like a pomegranate—with silicon nanoparticles clustered like seeds in a tough carbon rind—overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford Univ. and the SLAC National Accelerator Laboratory.

A battery small enough to be injected, energetic enough to track salmon

February 18, 2014 8:36 am | News | Comments

Scientists have created a microbattery that packs twice the energy compared to current microbatteries used to monitor the movements of salmon through rivers in the Pacific Northwest and around the world. The battery, a cylinder just slightly larger than a long grain of rice, is certainly not the world's smallest battery, as engineers have created batteries far tinier than the width of a human hair. 

Scientists find new path to loss-free electricity

February 13, 2014 2:06 pm | News | Comments

Superconductor “recipes” are frequently tweaked by swapping out elements or manipulating the valence electrons to strike the perfect conductive balance. Most high-temperature superconductors feature only one orbital impacting performance. But what about introducing more complex configurations? Now, Brookhaven National Laboratory’s physicists have combined atoms with multiple orbitals and precisely pinned down their electron distributions.

Report: Plastic shopping bags make a fine diesel fuel

February 12, 2014 1:15 pm | by Diana Yates, Life Sciences Editor Univ. of Illinois, Urbana-Champaign | News | Comments

Plastic shopping bags, an abundant source of litter on land and at sea, can be converted into diesel, natural gas and other useful petroleum products, researchers report. The conversion produces significantly more energy than it requires and results in transportation fuels that can be blended with existing ultra-low-sulfur diesels and biodiesels. Other products, such as natural gas and gasoline also can be obtained from shopping bags.

Method evaluates response to oxidation in live cells

February 12, 2014 9:56 am | News | Comments

Researchers at NIST have developed a new method for accurately measuring a key process governing a wide variety of cellular functions that may become the basis for a health checkup for living cells. The NIST technique measures changes in a living cell's internal redox (reduction-oxidation) potential, a chemistry concept that expresses the favorability of reactions in which molecules or atoms either gain or lose electrons.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading