Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Study: Solar energy-driven process quickly reclaims tailings ponds

September 24, 2014 8:52 am | News | Comments

Cleaning up oil sands tailings has just gotten a lot greener thanks to a novel technique developed by Univ. of Alberta civil engineering professors that uses solar energy to accelerate tailings pond reclamation efforts by industry. Instead of using ultraviolet lamps as a light source to treat the water affected by oil sands processes, sunlight alone treats just as efficiently but at a much lower cost.

2015 Industrial Food & Drug Fermentation and Separation Biotechnology Short Course

September 24, 2014 7:31 am | Events

This short course will provide practical training in the field of cell culture, bioreactor operation, bioprocess paradigm and separation technology. It will also increase understanding of the industrial food and drug fermentation biotechnology through simulation, sterilization technologies and clinical implications, as well as related research done across different countries, universities and industries.

New properties found in promising oxide ceramics for reactor fuels

September 23, 2014 2:14 pm | News | Comments

Nanocomposite oxide ceramics have potential uses as ferroelectrics, fast ion conductors, and nuclear fuels and for storing nuclear waste, generating a great deal of scientific interest on the structure, properties, and applications of these blended materials. Los Alamos National Laboratory researchers have made the first observations of the relationship between the chemistry and dislocation structures of the nanoscale interfaces.

Advertisement

New formulation leads to improved liquid battery

September 23, 2014 2:07 pm | by David L. Chandler, MIT | News | Comments

Donald Sadoway and his colleagues at the Massachusetts Institute of Technology have already started a company to produce electrical-grid-scale liquid batteries, whose layers of molten material automatically separate due to their differing densities. But a newly developed formula substitutes different metals for the molten layers. The new formula allows the battery to work at a much lower temperature.

Termites evolved complex bioreactors 30 million years ago

September 23, 2014 9:36 am | News | Comments

Achieving complete breakdown of plant biomass for energy conversion in industrialized bioreactors remains a complex challenge, but new research shows that termite fungus farmers solved this problem more than 30 million years ago. The new insight reveals that the great success of termite farmers as plant decomposers is due to division of labor.

Sandia magnetized fusion technique produces significant results

September 23, 2014 9:34 am | News | Comments

Inertial confinement fusion creates nanosecond bursts of neutrons, ideal for creating data to plug into supercomputer codes that test the U.S. nuclear stockpile. Down the road, it could be useful as a source of energy. Researchers at Sandia National Laboratories’ Z machine have produced a significant output of fusion neutrons, using a method fully functioning for only little more than a year.

Smallest possible “diamonds” help form ultra-thin nanothreads

September 22, 2014 2:52 pm | Videos | Comments

For the first time, scientists led by John V. Badding, a professor of chemistry at Penn State Univ., have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers. The core of the nanothreads is a long, thin strand of carbon atoms arranged just like the fundamental unit of a diamond's structure.

Engineered proteins stick like glue, even in water

September 22, 2014 1:46 pm | by Anne Trafton, MIT | News | Comments

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of Massachusetts Institute of Technology engineers has designed new materials that could be used to repair ships or help heal wounds and surgical incisions.

Advertisement

Uncovering the forbidden side of molecules

September 22, 2014 1:45 pm | News | Comments

Researchers in Switzerland have succeeded in observing the “forbidden” infrared spectrum of a charged molecule for the first time. These extremely weak spectra offer perspectives for extremely precise measurements of molecular properties and may also contribute to the development of molecular clocks and quantum technology.

First-ever chemical bond established between carbon and a superheavy element

September 19, 2014 11:16 am | News | Comments

Chemical experiments with superheavy elements, which have atomic numbers beyond 104, are extremely challenging because they must be synthesized in a particle accelerator and they decay rapidly. An international team has, for the first time, established a chemical bond between a superheavy element, in this case element 106, seaborgium, and a carbon atom. The experiment opens the door to new investigations of relativity effects.

Breaking “electrode barrier” creates a better low-cost organic solar cell

September 19, 2014 9:02 am | News | Comments

For decades, the power conversion efficiency of organic solar cells was hampered by the drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the Univ. of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the “electrode barrier.”

Researchers study vital on/off switches of deadly bacteria

September 19, 2014 7:50 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

No matter how many times it’s demonstrated, it’s still hard to envision bacteria as social, communicating creatures. But by using a signaling system called “quorum sensing,” these single-celled organisms radically alter their behavior to suit their population. In short, some bacteria “know” how many of them are present, and act accordingly.

Artificial “beaks” collect water from fog: A drought solution?

September 18, 2014 1:20 pm | News | Comments

By opening and closing their beaks, shorebirds drive food-containing liquid drops into their throats. Researchers have mimicked this phenomenon by building simple, fog-collecting, rectangular “beaks” out of glass plates connected by a hinge on one side. Providing a large surface area where beads of fog condense, the “beak” improved collection rates over alternatives by up to 900 times.

Advertisement

Nanoscience makes your wine better

September 18, 2014 1:13 pm | by Anne-Mette Siem, Aarhus Univ. | News | Comments

One sip of a perfectly poured glass of wine leads to an explosion of flavors in your mouth. Researchers in Denmark have now developed a nanosensor that can mimic what happens in your mouth when you drink wine. The sensor, which uses gold nanoparticles to act as a “mini-mouth”, measures how you experience the sensation of dryness in the wine.

Team is first to capture motion of single molecule in real time

September 16, 2014 6:23 pm | News | Comments

Chemists at the Univ. of California, Irvine, have scored a scientific first: capturing moving images of a single molecule as it vibrates, or “breathes,” and shifts from one quantum state to another. The groundbreaking achievement, led by Ara Apkarian, professor of chemistry, and Eric Potma, associate professor of chemistry, opens a window into the strange realm of quantum mechanics.

Scientists now closer to industrial synthesis of a material harder than diamond

September 15, 2014 12:16 pm | News | Comments

Researchers in Russia have developed a new method for the industrial synthesis of an ultra-hard material that exceeds diamond in hardness. An article recently published in Carbon describes in detail a method that allows for the synthesis of ultrahard fullerite, a polymer composed of fullerenes, or spherical molecules made of carbon atoms.

Moving silicon atoms in graphene with atomic precision

September 15, 2014 10:34 am | Videos | Comments

In recent years, it has become possible to see directly individual atoms using electron microscopy, especially in graphene. Using electron microscopy and computer simulations, an international team has recently shown how an electron beam can move silicon atoms through the graphene lattice without causing damage.

The ozone hole has stabilized, but some questions remain

September 11, 2014 4:50 pm | News | Comments

The production and consumption of chemical substances threatening the ozone layer has been regulated since 1987 in the Montreal Protocol. Eight international expert reports have since been published, the most recent of which was presented on Sept. 10 at the United Nations Headquarters in New York. Model calculations reveal that by 2050 the ozone layer may return to its 1980 levels.

Findings suggest how swimming cells form biofilms on surfaces

September 11, 2014 1:07 pm | by Emil Venere, Purdue Univ. | News | Comments

Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces. Costs associated with biofilms affecting medical devices and industrial equipment amount to billions of dollars annually. New research reveals specifics about interactions that induce bacteria to swim close to surfaces and attach to biofilms. This may point to future approaches for fighting biofilms.

Chemists discover way nose perceives common class of odors

September 10, 2014 6:10 pm | News | Comments

Biologists claim that humans can perceive and distinguish a trillion different odors, but little is known about the underlying chemical processes involved. Biochemists at The City College of New York have found an unexpected chemical strategy employed by the mammalian nose to detect chemicals known as aldehydes.

Angling chromium to let oxygen through

September 10, 2014 6:03 pm | by Mary Beckman, PNNL | News | Comments

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. In a serendipitous finding at Pacific Northwest National Laboratory, researchers have created a new form of strontium-chromium oxide that performs as a semiconductor and also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell.

Novel method for portable detection of drugs

September 10, 2014 10:37 am | by American Chemical Society | News | Comments

Despite being outlawed in 2012 in the U.S., the synthetic drugs known as “bath salts”—which really aren’t meant for your daily bath—are still readily available in some retail shops, on the Internet and on the streets. To help law enforcement, scientists are developing a novel method that could be the basis for the first portable, on-site testing device for identifying the drugs.

Searching for new forms of superconductivity in 2-D electron liquids

September 10, 2014 8:38 am | News | Comments

A new frontier for studying 2-D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Scientists hope to find exotic phenomena in these highly-interactive electron environments and one of the leaders in this effort is James Williams, a new fellow at the Joint Quantum Institute.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

First evidence for water ice clouds found outside solar system

September 9, 2014 12:22 pm | Videos | Comments

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets, but have not been seen outside of the planets orbiting our Sun until now.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading