Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Solar photons drive water off the moon

June 17, 2014 8:29 am | by Jason Maderer, Georgia Institute of Technology | News | Comments

Water is thought to be embedded in the moon’s rocks or, if cold enough, “stuck” on their surfaces. It’s predominantly found at the poles. But scientists probably won’t find it intact on the sunlit side. New research at indicates that ultraviolet photons emitted by the sun likely cause water molecules to either quickly desorb or break apart.

Scientists’ discoveries could help neutralize chemical weapons

June 16, 2014 2:32 pm | by Amy Blakely, Univ. of Tennessee, Knoxville | News | Comments

Researchers at the Univ. of Tennessee (UT) are a step closer to creating a prophylactic drug that would neutralize the deadly effects of the chemical weapons used in Syria and elsewhere. Jeremy Smith, UT-ORNL Governor’s Chair and an expert in computational biology, is part of the team that is trying to engineer enzymes—called bioscavengers—so they work more efficiently against chemical weapons.

Pittcon to sponsor International Year of Light

June 16, 2014 10:54 am | News | Comments

The Pittcon Organizing Committee, which holds the Pittcon Conference and Exposition each year, will participate in the International Year of Light initiative at the Associate Sponsor level. The United Nations General Assembly has proclaimed 2015 as the International Year of Light and Light-based Technologies. The sponsorship effort will include a variety of focused workshops and short courses in the coming year.

Advertisement

How cormorants emerge dry after deep dives

June 16, 2014 7:46 am | by David L. Chandler, MIT News Office | News | Comments

Feathers have long been recognized as a classic example of efficient water-shedding—as in the well-known expression “like water off a duck’s back.” A combination of modeling and laboratory tests has now determined how both chemistry—the preening oil that birds use—and the microstructure of feathers, with their barbs and barbules, allow birds to stay dry even after emerging from amazingly deep dives.

Long-range tunneling of quantum particles

June 13, 2014 10:34 am | News | Comments

A remarkable consequence of the rules in quantum mechanics is the ability of a quantum particle to penetrate a potential barrier even though its energy should allow it to travel the classical trajectory. This is the quantum tunnel effect. Physicists in Austria have now directly observed quantum particles transmitting through a whole series of up to five potential barriers under conditions where a single particle could not do the move.

Findings point toward first therapy for Lou Gehrig’s disease

June 13, 2014 7:36 am | News | Comments

Researchers have determined that a copper compound known for decades may form the basis for a therapy for amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease. In a new study, scientists showed in laboratory animal tests that oral intake of this compound significantly extended the lifespan and improved the locomotor function of transgenic mice that are genetically engineered to develop this debilitating and terminal disease.

Forging new ground in oil forensics

June 13, 2014 7:30 am | News | Comments

Years after the 2010 Deepwater Horizon Oil spill, oil continues to wash ashore as oil-soaked “sand patties,” persists in salt marshes abutting the Gulf of Mexico, and questions remain about how much oil has been deposited on the seafloor. Scientists have developed a unique way to fingerprint oil, even after most of it has degraded, and to assess how it changes over time.

Researchers in China develop cheaper method for making superlyophobic surfaces

June 11, 2014 11:41 am | News | Comments

Superlyophobic surfaces are simultaneously repellant for almost any liquid and exhibit high contact angles and low flow resist. But the demanding and usually expensive fabrication remains a bottleneck for further development. Researchers in Shenzhen, China, however, have now formulated a facile and inexpensive microfabrication method that uses polymers to help transfer the superlyophobic structures to curable materials.

Advertisement

How much fertilizer is too much for Earth's climate?

June 11, 2014 8:53 am | News | Comments

A study published by Michigan State Univ. researchers this week concludes that helping farmers around the globe apply more precise amounts of fertilizer nitrogen can combat climate change. The study uses data from around the world to show that emissions of nitrous oxide, a greenhouse gas produced in soil following nitrogen addition, rise faster than previously expected when fertilizer rates exceed crop needs.

A new solution for storing hydrogen fuel

June 11, 2014 8:36 am | News | Comments

Turning the “hydrogen economy” concept into a reality, even on a small scale, has been a bumpy road, but scientists are developing a novel way to store hydrogen to smooth out the long-awaited transition away from fossil fuels. Their report on a new solid, stable material that can pack in a large amount of hydrogen that can be used as a fuel appears in Chemistry of Materials.

Producing hyperpolarized xenon gas on a microfluidic chip

June 11, 2014 8:11 am | by Rachel Berkowitz, Lawrence Berkeley National Laboratory | News | Comments

While big machines were once the stuff that scientific dreams are made of, analytical spectroscopy instrumentation has trended to smaller products that are portable, affordable and fit into locations far removed from a standard laboratory, such as the back of an ambulance or inside a chemical reactor.

Tiny laser-powered sensor-on-a-chip tests chemical composition of liquids

June 11, 2014 7:51 am | News | Comments

Simple solid-state lasers consist of only one material. But quantum cascade lasers are made of a perfectly optimized layer system of different materials so the wavelength of the laser can be tuned. Now a method has been developed in Austria to create a laser and a detector at the same time, on one single chip, in such a way that the wavelength of the laser perfectly matches the wavelength to which the detector is sensitive.

NIST: The clumping density of many things seems to be a standard

June 11, 2014 7:37 am | News | Comments

Particles of soot floating through the air and comets hurtling through space have at least one thing in common: 0.36. That, reports a research group at NIST, is the measure of how dense they will get under normal conditions, and it’s a value that seems to be constant for similar aggregates across an impressively wide size range from nanometers to tens of meters. NIST hopes the results will aid climate researchers.

Advertisement

Technology using microwave heating may impact electronics manufacture

June 10, 2014 3:12 pm | News | Comments

Engineers at Oregon State University have successfully shown that a continuous flow reactor can produce high-quality nanoparticles by using microwave-assisted heating. This is essentially the same force that heats up leftover food with such efficiency, but instead of warming up yesterday’s pizza, this concept may change the production of cell phones and televisions or improve solar energy systems.

Charging portable electronics in 10 minutes

June 10, 2014 3:09 pm | by Sean Nealon, UC Riverside | News | Comments

Researchers at the University of California, Riverside Bourns College of Engineering have developed a 3-D, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes. It also increases cell capacity and reduces size and weight by 40%.

Designing ion “highway systems” for batteries

June 10, 2014 2:19 pm | News | Comments

Since the early 1970s, lithium has been the most popular element for batteries because of it’s low weight and good electrochemical potential. But it is also highly flammable. Researchers have recently married two traditional theories in materials science that can explain how the charge dictates the structure of the material. And using this they may be able to move to other materials, such as block copolymers, for use in batteries.

Evolution of a bimetallic nanocatalyst

June 9, 2014 7:58 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Atomic-scale snapshots of a bimetallic nanoparticle catalyst in action have provided insights that could help improve the industrial process by which fuels and chemicals are synthesized from natural gas, coal or plant biomass. A multinational laboratory collaboration has taken the most detailed look ever at the evolution of platinum/cobalt bimetallic nanoparticles during reactions in oxygen and hydrogen gases.

Seeing how a lithium-ion battery works

June 9, 2014 7:44 am | by David L. Chandler, MIT News Office | News | Comments

New observations by researchers at Massachusetts Institute of Technology have revealed the inner workings of a type of electrode widely used in lithium-ion batteries. The new findings explain the unexpectedly high power and long cycle life of such batteries, the researchers say.

Scientists explore using trees to clean pollution

June 9, 2014 2:20 am | by Ramit Plushnick-masti - Associated Press - Associated Press | News | Comments

Before Houston and its suburbs were built, a dense forest naturally purified the coastal air along a stretch of the Texas Gulf Coast that grew thick with pecan, ash, live oak and hackberry trees. It was the kind of pristine woodland that was mostly wiped out by settlers in their rush to clear land and build communities.

Shatterproof polymer screens to help save smartphones

June 6, 2014 10:57 am | News | Comments

Polymer scientists in Ohio have demonstrated how a transparent layer of electrodes on a polymer surface could be extraordinarily tough and flexible, withstanding repeated scotch tape peeling and bending tests. According to its developers, the new material could replace conventional indium tin oxide coatings currently used for touchscreens.

Opening a wide window on the nano-world of surface catalysis

June 6, 2014 10:20 am | by Steven Powell, Univ. of South Carolina | News | Comments

Surface catalysts are notoriously difficult to study mechanistically, but scientists at two universities have recently shown how to get real-time reaction information from silver nanocatalysts that have long frustrated attempts to describe their kinetic behavior in detail. The key to the team's success was bridging a size gap that had represented a wide chasm to researchers in the past.

All-natural mixture yields promising fire retardant

June 6, 2014 9:29 am | News | Comments

A dash of clay, a dab of fiber from crab shells, and a dollop of DNA: This strange group of materials are actually the ingredients of promising green fire retardants invented by researchers at NIST. Applied to polyurethane foam, the bio-based coatings greatly reduced the flammability of the common furniture padding after it was exposed to an open flame.

Researchers find mechanism that forms cell-to-cell catch bonds

June 6, 2014 9:09 am | News | Comments

Certain bonds connecting biological cells get stronger when they’re tugged. Those bonds are known as catch bonds and they’re formed by common adhesion proteins called cadherins. Using computer simulations based on data from previous experiments, researchers in Iowa have answered the question about how these bonds get stronger under force.

Researchers discover how water molecules adapt to presence of extra proton

June 6, 2014 8:02 am | by Eric Gershon, Yale Univ. | News | Comments

H2O is the molecule everybody knows, and nobody can live without. But for all its familiarity and import for life, aspects of water’s behavior have been hard to pin down, including how it conducts positive charge. In Science, Yale Univ. chemists report tracing how a cluster of water molecules adapts to the presence of an extra proton, the positively charged subatomic particle.

Ionic liquid boosts efficiency of carbon dioxide reduction catalyst

June 6, 2014 7:50 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

Wouldn’t it be nice to use solar- or wind-generated electricity to turn excess carbon dioxide into fuels and other useful chemicals? The process would store up the intermittent solar or wind energy in a form that could be used when and where it was needed, including in transportation applications, all while getting rid of some greenhouse gas.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading