Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Scientists solve 2,000-year-old Terracotta Army mystery

August 4, 2014 10:12 am | News | Comments

China's first emperor ordered the building of a glorious underground palace complex, mirroring his imperial capital, that would last for an eternity. Protecting this underworld palace was his imperial guard, cast in terracotta. Efforts to preserve the 1974 archaeological find have been hampered by failures to pinpoint the binding material used in applying pigments to the soldiers. Mass spectrometry studies have recently solved this mystery.

“Wetting” a battery’s appetite for renewable energy storage

August 4, 2014 9:22 am | by Frances White, PNNL | Videos | Comments

Sun, wind and other renewable energy sources could make up a larger portion of the electricity America consumes if better batteries could be built to store the intermittent energy for cloudy, windless days. Now a new material could allow more utilities to store large amounts of renewable energy and make the nation's power system more reliable and resilient.

Study of aerosols stands to improve climate models

August 4, 2014 9:12 am | by Kimm Fesenmaier, Caltech | News | Comments

Aerosols, tiny particles in the atmosphere, play a significant role in Earth's climate, scattering and absorbing incoming sunlight and affecting the formation and properties of clouds. Currently, the effect that these aerosols have on clouds represents the largest uncertainty among all influences on climate change.

Advertisement

NASA to test making rocket fuel on Mars

August 4, 2014 8:16 am | News | Comments

Taking fuel to Mars for return flights is heavy and expensive. The $1.9 billion Mars 2020 rover that NASA announced on Friday will include an experiment that will turn carbon dioxide in the Martian atmosphere into oxygen. It could then be used to make rocket fuel and for future astronauts to breathe. The device, named MOXIE, will make about three-quarters of an ounce of oxygen an hour.

Self-assembling anti-cancer molecules created in minutes

August 4, 2014 7:53 am | by Tom Frew, International Press Officer, Univ. of Warwick | News | Comments

Researchers have developed a simple and versatile method for making artificial anti-cancer molecules that mimic the properties of one of the body’s natural defense systems. The chemists have been able to produce molecules that have a similar structure to peptides which are naturally produced in the body to fight cancer and infection.

Chemists demonstrate “bricks-and-mortar” assembly of new molecular structures

July 31, 2014 10:16 am | News | Comments

Scientists in Indiana have recently described the self-assembly of large, symmetrical molecules in “bricks-and-mortar” fashion. While researchers have created many such large, cyclic molecules, or macrocycles, what these chemists have built is a cyanostar, a five-sided molecule that is unusual in that it can be readily synthesized in a "one pot" process. It also has an unprecedented ability to bind with large, negatively charged anions.

Toward a home test for detecting potentially dangerous levels of caffeine

July 31, 2014 8:37 am | by American Chemical Society | News | Comments

The shocking news of an Ohio teen who died of a caffeine overdose in May highlighted the potential dangers of the normally well-tolerated and mass-consumed substance. To help prevent serious health problems that can arise from consuming too much caffeine, scientists are reporting progress toward a rapid, at-home test to detect even low levels of the stimulant in most beverages and even breast milk.

Study: Tumors absorb sugar for mobility

July 30, 2014 4:46 pm | by Lionel Pousaz, EPFL | News | Comments

We have long known that cancer cells monopolize large amounts of sugar. More recently, it became clear that some tumor cells are also characterized by a series of features such as mobility or unlikeliness to join in an ordered set. Researchers are calling this behavior “mesenchymal,” and they suspect it promotes metastasis.

Advertisement

Exploring 3-D printing to make organs for transplants

July 30, 2014 11:48 am | News | Comments

With the help of conventional inkjet printers, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand. Their recent work in testing bioinks filled with hydrogel and different concentrations of mouse fibroblasts shed light on how the inks behave when they’re dispensed through printer nozzles.

Lead pollution beat explorers to South Pole, persists today

July 29, 2014 9:25 am | by Justin Broglio, Desert Research Institute | News | Comments

Norwegian explorer Roald Amundsen became the first man to reach the South Pole in December 1911. More than 100 years later, an international team of scientists that includes a NASA researcher has proven that air pollution from industrial activities arrived to the planet’s southern pole long before any human.

Mineral magic? Common mineral capable of making, breaking bonds

July 29, 2014 8:39 am | by Nikki Cassis, Arizona State Univ. | News | Comments

Reactions among minerals and organic compounds in hydrothermal environments are critical components of the Earth’s deep carbon cycle. They provide energy for the deep biosphere, and may have implications for the origins of life. However, very little is known about how minerals influence organic reactions. A team of researchers has demonstrated how a common mineral acts as a catalyst for specific hydrothermal organic reactions.

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Advertisement

Understanding the source of extra-large capacities in promising Li-ion battery electrodes

July 28, 2014 8:15 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Lithium (Li)-ion batteries power almost all of the portable electronic devices that we use every day, including smartphones, cameras, toys and even electric cars. Researchers across the globe are working to find materials that will lead to safe, cheap, long-lasting and powerful Li-ion batteries.

Four billion-year-old chemistry in cells today

July 25, 2014 6:58 am | News | Comments

The primordial soup theory suggests that life began in a pond or ocean as a result of the combination of metals, gases from the atmosphere and some form of energy, such as a lightning strike, to make the building blocks of proteins which would then evolve into all species. New research shows how mitochondria in cells continue to perform similar reactions in our bodies today.

Chemist develops x-ray vision for quality assurance

July 25, 2014 6:57 am | by Iben Julie Schmidt, Technical Univ. of Denmark | News | Comments

A new method that uses x-rays for the rapid identification of substances present in an indeterminate powder has been developed by a scientist in Denmark. The new technique has the capacity to recognize advanced biological molecules such as proteins, which makes it potentially important in both food production and the pharmaceutical industry, where it opens up new opportunities for the quality assurance of protein-based medicines.

The microbes make the sake brewery

July 25, 2014 6:56 am | News | Comments

According to recent research that marks the first time investigators have taken a microbial census of a sake brewery, the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor. This means a sake brewery has its own microbial terroir.

New approach helps form non-equilibrium structures

July 25, 2014 6:49 am | News | Comments

Scientists at Northwestern Univ. have developed a new technique for creating non-equilibrium systems, which experience constant changes in energy and phases, such as temperature fluctuations, freezing and melting, or movement. The method, which involves injecting energy through oscillations to force particles to self-assemble under non-equilibrium conditions, should help us understand the fundamentals of this mysterious topic.

Highest-precision measurement made of water on an exoplanet

July 24, 2014 10:02 am | News | Comments

The discovery of water vapor in the atmospheres of three exoplanets includes the most precise measurement of any chemical in a planet outside the solar system, and has major implications for planet formation and the search for water on Earth-like habitable exoplanets in future. These results show just how challenging it could be to detect water on Earth-like exoplanets in our search for potential life elsewhere.

Spinach could lead to alternative energy more powerful than Popeye

July 23, 2014 4:07 pm | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Spinach gave Popeye super strength, but it also holds the promise of a different power for a group of scientists: the ability to convert sunlight into a clean, efficient alternative fuel. Purdue Univ. physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.

Bringing high-energy x-rays into better focus

July 23, 2014 10:15 am | News | Comments

Scientists at SLAC National Accelerator Laboratory have invented a customizable chemical etching process that can be used to manufacture high-performance focusing devices for the brightest x-ray sources on the planet, as well as to make other nanoscale structures such as biosensors and battery electrodes.

Southwest Research Institute to lead joint industry project for separation tech

July 23, 2014 8:03 am | News | Comments

The launch of a multi-million dollar joint industry project this week by Southwest Research Institute (SwRI) aims to better understand oil and gas separation technology. The Separation Technology Research Program (STAR Program) is a three-year effort open to operating companies, contractors and equipment manufacturers, and will combine industry knowledge and resources to advance research.

Technique simplifies the creation of high-tech crystals

July 22, 2014 2:29 pm | News | Comments

Highly purified crystals that split light with precision are valued in specialized optics. But photonic crystals are difficult to make with current techniques, namely electron beam etching. Researchers at Princeton and Columbia universities have proposed a new method derived from colloidal suspensions that could allow scientists to customize and grow optimal crystals with relative ease.

NIST develops prototype meter test for hydrogen refueling stations

July 22, 2014 2:20 pm | News | Comments

Three automakers plan to begin selling hydrogen-fueled vehicles to consumers in 2015. To support the fair sale of gaseous hydrogen as a vehicle fuel, researchers at NIST have developed a prototype field test standard to test the accuracy of hydrogen fuel dispensers. Once the standard is field tested, it will serve as a model for constructing similar devices for state weights and measures inspectors to use.

Students to design, build, fly experiment to test green propellant

July 22, 2014 1:43 pm | by Emil Venere, Purdue Univ. | News | Comments

The Zero-Gravity Flight Experiment course at Purdue Univ. will see its creation soar to the upper atmosphere to study a new green propellant. The students are partnering with Aerojet Rocketdyne to demonstrate that the propellant can replace the traditional but highly toxic hydrazine fuel. They will design and build their experiment at Purdue, then NASA will launch it on a commercial suborbital rocket flight for weightless experiment time.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading