Advertisement
Chemistry
Subscribe to Chemistry
View Sample

FREE Email Newsletter

Exploring 3-D printing to make organs for transplants

July 30, 2014 11:48 am | News | Comments

With the help of conventional inkjet printers, scientists are reporting new understanding about the dynamics of 3-D bioprinting that takes them a step closer to realizing their goal of making working tissues and organs on-demand. Their recent work in testing bioinks filled with hydrogel and different concentrations of mouse fibroblasts shed light on how the inks behave when they’re dispensed through printer nozzles.

Lead pollution beat explorers to South Pole, persists today

July 29, 2014 9:25 am | by Justin Broglio, Desert Research Institute | News | Comments

Norwegian explorer Roald Amundsen became the first man to reach the South Pole in December 1911. More than 100 years later, an international team of scientists that includes a NASA researcher has proven that air pollution from industrial activities arrived to the planet’s southern pole long before any human.

Mineral magic? Common mineral capable of making, breaking bonds

July 29, 2014 8:39 am | by Nikki Cassis, Arizona State Univ. | News | Comments

Reactions among minerals and organic compounds in hydrothermal environments are critical components of the Earth’s deep carbon cycle. They provide energy for the deep biosphere, and may have implications for the origins of life. However, very little is known about how minerals influence organic reactions. A team of researchers has demonstrated how a common mineral acts as a catalyst for specific hydrothermal organic reactions.

Advertisement

New tool for characterizing plant sugar transporters

July 29, 2014 8:28 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

A powerful new tool that can help advance the genetic engineering of “fuel” crops for clean, green and renewable bioenergy, has been developed by researchers at the Joint BioEnergy Institute, a multi-institutional partnership led by Lawrence Berkeley National Laboratory. The researchers have developed an assay that enables scientists to identify and characterize the function of nucleotide sugar transporters.

Cagey material acts as alcohol factory

July 28, 2014 2:37 pm | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed and patented by researchers at Lawrence Berkeley National Laboratory, is making this process a little easier.

Understanding the source of extra-large capacities in promising Li-ion battery electrodes

July 28, 2014 8:15 am | by Laura Mgrdichian, Brookhaven National Laboratory | News | Comments

Lithium (Li)-ion batteries power almost all of the portable electronic devices that we use every day, including smartphones, cameras, toys and even electric cars. Researchers across the globe are working to find materials that will lead to safe, cheap, long-lasting and powerful Li-ion batteries.

Four billion-year-old chemistry in cells today

July 25, 2014 6:58 am | News | Comments

The primordial soup theory suggests that life began in a pond or ocean as a result of the combination of metals, gases from the atmosphere and some form of energy, such as a lightning strike, to make the building blocks of proteins which would then evolve into all species. New research shows how mitochondria in cells continue to perform similar reactions in our bodies today.

Chemist develops x-ray vision for quality assurance

July 25, 2014 6:57 am | by Iben Julie Schmidt, Technical Univ. of Denmark | News | Comments

A new method that uses x-rays for the rapid identification of substances present in an indeterminate powder has been developed by a scientist in Denmark. The new technique has the capacity to recognize advanced biological molecules such as proteins, which makes it potentially important in both food production and the pharmaceutical industry, where it opens up new opportunities for the quality assurance of protein-based medicines.

Advertisement

The microbes make the sake brewery

July 25, 2014 6:56 am | News | Comments

According to recent research that marks the first time investigators have taken a microbial census of a sake brewery, the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor. This means a sake brewery has its own microbial terroir.

New approach helps form non-equilibrium structures

July 25, 2014 6:49 am | News | Comments

Scientists at Northwestern Univ. have developed a new technique for creating non-equilibrium systems, which experience constant changes in energy and phases, such as temperature fluctuations, freezing and melting, or movement. The method, which involves injecting energy through oscillations to force particles to self-assemble under non-equilibrium conditions, should help us understand the fundamentals of this mysterious topic.

Highest-precision measurement made of water on an exoplanet

July 24, 2014 10:02 am | News | Comments

The discovery of water vapor in the atmospheres of three exoplanets includes the most precise measurement of any chemical in a planet outside the solar system, and has major implications for planet formation and the search for water on Earth-like habitable exoplanets in future. These results show just how challenging it could be to detect water on Earth-like exoplanets in our search for potential life elsewhere.

Spinach could lead to alternative energy more powerful than Popeye

July 23, 2014 4:07 pm | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Spinach gave Popeye super strength, but it also holds the promise of a different power for a group of scientists: the ability to convert sunlight into a clean, efficient alternative fuel. Purdue Univ. physicists are part of an international group using spinach to study the proteins involved in photosynthesis, the process by which plants convert the sun’s energy into carbohydrates used to power cellular processes.

Bringing high-energy x-rays into better focus

July 23, 2014 10:15 am | News | Comments

Scientists at SLAC National Accelerator Laboratory have invented a customizable chemical etching process that can be used to manufacture high-performance focusing devices for the brightest x-ray sources on the planet, as well as to make other nanoscale structures such as biosensors and battery electrodes.

Advertisement

Southwest Research Institute to lead joint industry project for separation tech

July 23, 2014 8:03 am | News | Comments

The launch of a multi-million dollar joint industry project this week by Southwest Research Institute (SwRI) aims to better understand oil and gas separation technology. The Separation Technology Research Program (STAR Program) is a three-year effort open to operating companies, contractors and equipment manufacturers, and will combine industry knowledge and resources to advance research.

Technique simplifies the creation of high-tech crystals

July 22, 2014 2:29 pm | News | Comments

Highly purified crystals that split light with precision are valued in specialized optics. But photonic crystals are difficult to make with current techniques, namely electron beam etching. Researchers at Princeton and Columbia universities have proposed a new method derived from colloidal suspensions that could allow scientists to customize and grow optimal crystals with relative ease.

NIST develops prototype meter test for hydrogen refueling stations

July 22, 2014 2:20 pm | News | Comments

Three automakers plan to begin selling hydrogen-fueled vehicles to consumers in 2015. To support the fair sale of gaseous hydrogen as a vehicle fuel, researchers at NIST have developed a prototype field test standard to test the accuracy of hydrogen fuel dispensers. Once the standard is field tested, it will serve as a model for constructing similar devices for state weights and measures inspectors to use.

Students to design, build, fly experiment to test green propellant

July 22, 2014 1:43 pm | by Emil Venere, Purdue Univ. | News | Comments

The Zero-Gravity Flight Experiment course at Purdue Univ. will see its creation soar to the upper atmosphere to study a new green propellant. The students are partnering with Aerojet Rocketdyne to demonstrate that the propellant can replace the traditional but highly toxic hydrazine fuel. They will design and build their experiment at Purdue, then NASA will launch it on a commercial suborbital rocket flight for weightless experiment time.

The stability of gold clusters: Every ligand counts

July 22, 2014 8:37 am | News | Comments

By colliding ultra-small gold particles with a surface and analyzing the resulting fragments, a trio of scientists at Pacific Northwest National Laboratory discovered how and why the particles break. This information is important for controlling the synthesis of these tiny building blocks that are of interest to catalysis, energy conversion and storage, and chemical sensing.

Chemists eye improved thin films with metal substitution

July 21, 2014 1:46 pm | News | Comments

The yield so far is small, but chemists at the Univ. of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films. The inorganic process is a new approach to transmetalation, in which individual atoms of one metal complex are individually substituted in water. The innovation could find use in electronics and alternative energy devices.

New method for extracting radioactive elements from air, water

July 21, 2014 8:21 am | by Univ. of Liverpool Univ. News | News | Comments

Scientists have successfully tested a material that can extract atoms of rare or dangerous elements such as radon from the air. Gases such as radon, xenon and krypton all occur naturally in the air but in minute quantities—typically less than one part per million. As a result they are expensive to extract for use in industries such as lighting or medicine and, in the case of radon, the gas can accumulate in buildings.

Water molecules favor negative charges

July 17, 2014 7:52 am | News | Comments

Recent research shows that, in the presence of charged substances, water molecules favor associating with elements with a negative electrical charge rather than a positive electric charge. A study on the subject that employed advanced optical spectroscopy techniques could provide new insights on the processes of cell formation.

Are ants the answer to carbon dioxide sequestration?

July 17, 2014 7:24 am | News | Comments

A 25-year-long study published in Geology provides the first quantitative measurement of in situ calcium-magnesium silicate mineral dissolution by ants, termites, tree roots, and bare ground. This study reveals that ants are one of the most powerful biological agents of mineral decay yet observed. This discovery might offer a line of research on how to "geoengineer" accelerated carbon dioxide consumption by Ca-Mg silicates.

Dispersant from Deepwater Horizon spill found to persist in the environment

July 16, 2014 12:51 pm | News | Comments

In an attempt to prevent vast quantities of oil from fouling beaches and marshes after the 2010 Deepwater Horizon spill in the Gulf of Mexico, BP applied 1.84 million gallons of chemical dispersant. The dispersant was thought to rapidly degrade in the environment, but a new study has found that the DOSS dispersant compound remains associated with oil and can persist in the environment for up to four years.

Bubble wrap serves as sheet of tiny test tubes in resource-limited regions

July 16, 2014 11:46 am | News | Comments

Popping the blisters on the bubble wrap might be the most enjoyable thing about moving. But now, researchers led by 2007 R&D Magazine Scientist of the Year George Whitesides propose a more productive way to reuse the popular packing material: as a sheet of small, test tube-like containers for medical and environmental samples. Analyses can take place right in the bubbles.

Directly visualizing hydrogen bonds

July 15, 2014 3:53 pm | News | Comments

Using a newly developed, ultrafast femtosecond infrared light source, chemists at the University of Chicago have been able to directly visualize the coordinated vibrations between hydrogen-bonded molecules. This marks the first time this sort of chemical interaction, which is found in nature everywhere at the molecular level, has been directly visualized.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading