Advertisement
Chemistry
Subscribe to Chemistry

The Lead

Team is first to capture motion of single molecule in real time

September 16, 2014 6:23 pm | News | Comments

Chemists at the Univ. of California, Irvine, have scored a scientific first: capturing moving images of a single molecule as it vibrates, or “breathes,” and shifts from one quantum state to another. The groundbreaking achievement, led by Ara Apkarian, professor of chemistry, and Eric Potma, associate professor of chemistry, opens a window into the strange realm of quantum mechanics.

View Sample

FREE Email Newsletter

Findings suggest how swimming cells form biofilms on surfaces

September 11, 2014 1:07 pm | by Emil Venere, Purdue Univ. | News | Comments

Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces. Costs associated with biofilms affecting medical devices and industrial equipment amount to billions of dollars annually. New research reveals specifics about interactions that induce bacteria to swim close to surfaces and attach to biofilms. This may point to future approaches for fighting biofilms.

Chemists discover way nose perceives common class of odors

September 10, 2014 6:10 pm | News | Comments

Biologists claim that humans can perceive and distinguish a trillion different odors, but little is known about the underlying chemical processes involved. Biochemists at The City College of New York have found an unexpected chemical strategy employed by the mammalian nose to detect chemicals known as aldehydes.

Angling chromium to let oxygen through

September 10, 2014 6:03 pm | by Mary Beckman, PNNL | News | Comments

Researchers have been trying to increase the efficiency of solid oxide fuel cells by lowering the temperatures at which they run. In a serendipitous finding at Pacific Northwest National Laboratory, researchers have created a new form of strontium-chromium oxide that performs as a semiconductor and also allows oxygen to diffuse easily, a requirement for a solid oxide fuel cell.

Advertisement

Novel method for portable detection of drugs

September 10, 2014 10:37 am | by American Chemical Society | News | Comments

Despite being outlawed in 2012 in the U.S., the synthetic drugs known as “bath salts”—which really aren’t meant for your daily bath—are still readily available in some retail shops, on the Internet and on the streets. To help law enforcement, scientists are developing a novel method that could be the basis for the first portable, on-site testing device for identifying the drugs.

Searching for new forms of superconductivity in 2-D electron liquids

September 10, 2014 8:38 am | News | Comments

A new frontier for studying 2-D matter is provided by planar collections of electrons at the surface of transition-metal-oxide (TMO) materials, in which high electron densities give rise to interactions that are stronger than in semiconductors. Scientists hope to find exotic phenomena in these highly-interactive electron environments and one of the leaders in this effort is James Williams, a new fellow at the Joint Quantum Institute.

New "dry" process creates artificial membranes on silicon

September 9, 2014 2:42 pm | News | Comments

Artificial membranes mimicking those found in living organisms have many potential applications ranging from detecting bacterial contaminants in food to toxic pollution in the environment to dangerous diseases in people. Now a group of scientists in Chile has developed a way to create these delicate, ultra-thin constructs through a "dry" process, by evaporating two commercial, off-the-shelf chemicals onto silicon surfaces.

First evidence for water ice clouds found outside solar system

September 9, 2014 12:22 pm | Videos | Comments

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets, but have not been seen outside of the planets orbiting our Sun until now.

Scientists apply biomedical technique to reveal changes in body of the ocean

September 9, 2014 7:33 am | News | Comments

For decades, doctors have developed methods to diagnose how different types of cells and systems in the body are functioning. Now scientists have adapted an emerging biomedical technique to study the vast body of the ocean. In recent work they have demonstrated that they can identify and measure proteins in the ocean, revealing how single-celled marine organisms and ocean ecosystems operate.

Advertisement

Parting water: “Electric prism” separates water’s nuclear spin states

September 8, 2014 1:43 pm | News | Comments

Using an "electric prism", or deflector, scientists have found a new way of separating water molecules that differ only in their nuclear spin states and, under normal conditions, do not part ways. Since water is such a fundamental molecule in the universe, the recent study may impact a multitude of research areas ranging from biology to astrophysics.

Sugar substitutes not so super sweet after all

September 5, 2014 9:04 am | News | Comments

The taste of common sugar substitutes is often described as being much more intense than sugar, but participants in a recent study indicated that these non-nutritive sugar substitutes are no sweeter than the real thing, according to Penn State food scientists.

Magnetic nanocubes self-assemble into helical superstructures

September 5, 2014 7:46 am | by Jeanne Galatzer-Levy, Univ. of Illinois, Chicago | News | Comments

Materials made from nanoparticles hold promise for myriad applications. The challenge in creating these wonder materials is organizing the nanoparticles into orderly arrangements. Nanoparticles of magnetite, the most abundant magnetic material on earth, are found in living organisms from bacteria to birds. Nanocrystals of magnetite self-assemble into fine compass needles in the organism that help it to navigate.

Ultrasensitive biosensor from molybdenite semiconductor outshines graphene

September 4, 2014 12:58 pm | News | Comments

A new atomically thin 2-D ultrasensitive semiconductor material developed by researchers California promises to push the boundaries of biosensing technology toward single-molecule detection. Based on molybdenum disulfide or molybdenite, the biosensor material which is used commonly as a dry lubricant, surpasses graphene’s already high sensitivity, offers better scalability and lends itself to high-volume manufacturing.

Electron microscopes take first measurements of nanoscale chemistry in action

September 4, 2014 8:15 am | by Louise Lerner, Argonne National Laboratory | Videos | Comments

Scientists’ underwater cameras got a boost this summer from the Electron Microscopy Center at Argonne National Laboratory. Along with colleagues at the Univ. of Manchester, researchers captured the world’s first real-time images and simultaneous chemical analysis of nanostructures while “underwater,” or in solution.

Advertisement

Scientists shed light on organic photovoltaic characteristics

September 3, 2014 4:05 pm | News | Comments

The most familiar photovoltaic (PV) designs use rigid layers of silicon crystal, but recently inexpensive organic semiconductor materials have also been used successfully. At this time, organic PV devices are hindered by low efficiency, in part because quantifying their electrical properties is a challenge. Researchers have now developed a method that allows the prediction of the current density-voltage curve of a photovoltaic device.

A new synthetic amino acid for an emerging class of drugs

September 3, 2014 1:01 pm | News | Comments

Scientists in Switzerland have developed a new amino acid that can be used to modify the 3-D structure of therapeutic peptides. Insertion of the amino acid into bioactive peptides enhanced their binding affinity up to 40-fold. Peptides with the new amino acid could potentially become a new class of therapeutics.

Researchers observe the phenomenon of "lithium plating" during the charging process

September 3, 2014 8:55 am | News | Comments

When metallic lithium forms and deposits during the charging process in a lithium-ion battery, it can lead to a reduced battery lifespan and even short circuits. Using neutron beams, scientists have now peered into the inner workings of a functioning battery without destroying it. In the process, they have resolved this so-called lithium plating mystery.

Nano-sized synthetic scaffolding technique

September 3, 2014 7:33 am | by Jim Barlow, Director of Science and Research Communications, Univ. of Oregon | News | Comments

Scientists have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological mechanisms and processes. The accomplishmentis expected to fuel an alternative design of the 2-D peptoid nanosheets that can be used in a broad range of applications. Among them could be improved chemical sensors and separators, and safer, more effective drug delivery vehicles.

Beyond the Round Bottom Flask

September 2, 2014 12:29 pm | by Urs Groth, Fabio Visentin and Adrian Burke, Mettler Toledo | Articles | Comments

Researchers working in synthetic organic chemistry are under pressure to quickly develop innovative chemical reactions. But with methods largely unchanged over the last 50 years, synthesis possibilities are constrained by limited temperature ranges, demanding experiment supervision and lack of repeatability. New technology is enhancing synthesis by eliminating these challenges.

Going to extremes for enzymes

September 2, 2014 8:08 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

In the age-old nature versus nurture debate, Douglas Clark, a faculty scientist with Lawrence Berkeley National Laboratory and the Univ. of California, Berkeley, is not taking sides. In the search for enzymes that can break lignocellulose down into biofuel sugars under the extreme conditions of a refinery, he has prospected for extremophilic microbes and engineered his own cellulases.

Synthesis produces new antibiotic

August 28, 2014 10:10 am | by Mike Williams, Rice Univ. | News | Comments

A fortuitous collaboration at Rice Univ. has led to the total synthesis of a recently discovered natural antibiotic. The laboratory recreation of a fungus-derived antibiotic, viridicatumtoxin B, may someday help bolster the fight against bacteria that evolve resistance to treatments in hospitals and clinics around the world.

Leading scientists call for a stop to non-essential use of fluorochemicals

August 28, 2014 8:27 am | News | Comments

A number of leading international researchers, among others from the National Food Institute, Technical University of Denmark, have recommended that fluorochemicals should only be used where absolutely essential, until better methods exist to measure the chemicals and more is known about their potentially harmful effects.

Experiments explain why some liquids are fragile and others are strong

August 27, 2014 4:37 pm | by Diana Lutz, Washington Univ. in St. Louis | News | Comments

Only recently has it become possible to accurately “see” the structure of a liquid. Using x-rays and a high-tech apparatus that holds liquids without a container, a professor at Washington Univ. in St. Louis was able to compare the behavior of glass-forming liquids as they approach the glass transition.

Rubber meets the road with ORNL carbon, battery technologies

August 27, 2014 3:22 pm | by Ron Walli, Oak Ridge National Laboratory Communications | News | Comments

Recycled tires could see new life in lithium-ion batteries that provide power to plug-in electric vehicles and store energy produced by wind and solar, say researchers at Oak Ridge National Laboratory. By modifying the microstructural characteristics of carbon black, a substance recovered from discarded tires, a team of researchers is developing a better anode for lithium-ion batteries.

Laser pulse turns glass into a metal

August 26, 2014 10:06 am | News | Comments

For tiny fractions of a second, when illuminated by a laser pulse, quartz glass can take on metallic properties. The phenomenon, recently revealed by large-scale computer simulations, frees electrons, allowing quartz to become opaque and conduct electricity. The effect could be used to build logical switches which are much faster than today’s microelectronics.

Materials scientists, mathematicians benefit from newly crafted polymers

August 26, 2014 8:55 am | News | Comments

Polymers come with a range of properties dictated by their chemical composition and geometrical arrangement. Yasuyuki Tezuka and his team at Tokyo Institute of Technology have now applied an approach to synthesize a new type of multicyclic polymer geometry. While mathematicians are interested because these structures have not been realized before, the geometry studies also provide insights for chemists.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading