Advertisement
Biology
Subscribe to Biology
View Sample

FREE Email Newsletter

Magnetic field opens and closes nanovesicle

September 24, 2014 9:18 am | Videos | Comments

Researchers in the Netherlands have managed to open nanovesicles in a reversible process and close them using a magnet. Previously, these vesicles had been “loaded” with a drug and opened elsewhere using a chemical process, such as osmosis. The magnetic method, which is repeatable, is the first to demonstrate the viability of another method.

Antifreeze proteins in Antarctic fish prevent both freezing and melting

September 24, 2014 8:48 am | News | Comments

Antarctic fish that manufacture their own "antifreeze" proteins to survive in the icy Southern Ocean also suffer an unfortunate side effect: The protein-bound ice crystals that accumulate inside their bodies resist melting even when temperatures warm. Ice that doesn't melt at its normal melting point is referred to as "superheated”, and the phenomenon was an unexpected discovery by scientists in Oregon and Illinois.

2015 Industrial Food & Drug Fermentation and Separation Biotechnology Short Course

September 24, 2014 7:31 am | Events

This short course will provide practical training in the field of cell culture, bioreactor operation, bioprocess paradigm and separation technology. It will also increase understanding of the industrial food and drug fermentation biotechnology through simulation, sterilization technologies and clinical implications, as well as related research done across different countries, universities and industries.

Advertisement

Nanotubes help healing hearts keep the beat

September 23, 2014 2:58 pm | Videos | Comments

A Rice Univ. team led by bioengineer Jeffrey Jacot and chemical engineer and chemist Matteo Pasquali have created new pediatric heart-defect patches infused with conductive single-walled carbon nanotubes that allow electrical signals to pass unhindered. The nanotubes overcome a limitation of current patches in which pore walls hinder the transfer of electrical signals between cardiomyocytes, the heart muscle’s beating cells.

Termites evolved complex bioreactors 30 million years ago

September 23, 2014 9:36 am | News | Comments

Achieving complete breakdown of plant biomass for energy conversion in industrialized bioreactors remains a complex challenge, but new research shows that termite fungus farmers solved this problem more than 30 million years ago. The new insight reveals that the great success of termite farmers as plant decomposers is due to division of labor.

Battling superbugs

September 23, 2014 9:13 am | by Anne Trafton, MIT | News | Comments

Each year, new strains of bacteria emerge that resist even the most powerful antibiotics, but scientists have discovered very few new classes of antibiotics in the past decade. Engineers have now turned a powerful new weapon on these superbugs. Using a gene-editing system that can disable any target gene, they have shown that they can selectively kill bacteria carrying harmful genes that confer antibiotic resistance or cause disease.

Bioengineers develop a toolkit for designing better synthetic molecules

September 23, 2014 9:10 am | by Bjorn Carey, Stanford Univ. | News | Comments

Synthetic molecules hold great potential for revealing key processes that occur in cells, but the trial-and-error approach to their design has limited their effectiveness. Christina Smolke at Stanford Univ. has introduced a new computer model that could provide better blueprints for building synthetic genetic tools.

Scientists discover an on/off switch for aging cells

September 22, 2014 10:20 am | News | Comments

Researchers at the Salk Institute have discovered an on-and-off “switch” in cells that may hold the key to healthy aging. This switch, which involves the enzyme telomerase, points to a way to encourage healthy cells to keep dividing and generating, for example, new lung or liver tissue, even in old age.

Advertisement

Program predicts placement of chemical tags that control gene activity

September 22, 2014 9:20 am | by Susan Brown, Univ. of California, San Diego | News | Comments

Biochemists in California have developed a program that predicts the placement of chemical marks that control the activity of genes based on sequences of DNA. By comparing sequences with and without epigenomic modification, the researchers identified DNA patterns associated with the changes. They call this novel analysis pipeline Epigram and have made both the program and the DNA motifs they identified openly available to other scientists.

Graphene sensor tracks down cancer biomarkers

September 19, 2014 4:33 pm | News | Comments

A new, ultrasensitive biosensor made from graphene has been used to detect molecules that indicate an increased risk of developing cancer. The biosensor has been shown to be more than five times more sensitive than bioassay tests currently in use, and was able to provide results in a matter of minutes, opening up the possibility of a rapid, point-of-care diagnostic tool for patients.

Ig Nobel winner: Using pork to stop nosebleeds

September 19, 2014 8:49 am | by Mark Pratt, Associated Press | News | Comments

There's some truth to the effectiveness of folk remedies, according to findings by a team from Detroit Medical Center. Dr. Sonal Saraiya and her colleagues in Michigan found that packing strips of cured pork in the nose of a child who suffers from uncontrollable, life-threatening nosebleeds can stop the hemorrhaging. The discovery won a 2014 Ig Nobel prize, the annual award for sometimes inane, but often practical, scientific discoveries.

Researchers study vital on/off switches of deadly bacteria

September 19, 2014 7:50 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

No matter how many times it’s demonstrated, it’s still hard to envision bacteria as social, communicating creatures. But by using a signaling system called “quorum sensing,” these single-celled organisms radically alter their behavior to suit their population. In short, some bacteria “know” how many of them are present, and act accordingly.

Sensing neuronal activity with light

September 18, 2014 12:29 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

For years, neuroscientists have been trying to develop tools that would allow them to clearly view the brain's circuitry in action. To get this complete picture, neuroscientists are working to develop a range of new tools to study the brain. Researchers at Caltech have developed one such tool that provides a new way of mapping neural networks in a living organism.

Advertisement

New diagnostic method identifies genetic diseases

September 18, 2014 9:01 am | News | Comments

Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. To solve this problem, scientists have developed an innovative diagnostic procedure, called PhenIX, that combines the analysis of genetic irregularities with the patient's clinical presentation. The method involves a search for genes that cause disease and its related phenotypes to produce a short, testable list.

Boosting global corn yields depends on improving nutrient balance

September 18, 2014 7:40 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Ensuring that corn absorbs the right balance of nitrogen, phosphorus and potassium is crucial to increasing global yields, a Purdue and Kansas State Univ. study finds. A review of data from more than 150 studies from the U.S. and other regions showed that high yields were linked to production systems in which corn plants took up key nutrients at specific ratios.

Sampling Methods for Microanalysis

September 17, 2014 11:48 am | by Mary L. Stellmack, McCrone Associates Inc. | McCrone Associates, Inc. | Articles | Comments

In order to identify contaminants in industrial products, it’s sometimes necessary to send samples of the contaminated material to a laboratory for analysis. The choice of sampling method and the selection of a shipping container are critical to ensure that a representative sample is obtained, and no additional foreign material (FM) is added to the sample during transport to the laboratory.

Designing more successful synthetic molecules

September 17, 2014 11:08 am | by Bjorn Carey, Stanford News Service | News | Comments

Ever since Robert Hooke first described cells in 1665, scientists have been trying to figure out what goes on inside. One of the most exciting modern techniques involves injecting cells with synthetic genetic molecules that can passively report on the cell's behavior. A new computer model could not only improve the sensitivity and success of these synthetic molecules, but also make them easier to design in the first place.

Scientists discover RNA modifications in some unexpected places

September 16, 2014 11:40 am | by Matt Fearer, Whitehead Institute | News | Comments

Deploying sophisticated high-throughput sequencing technology, a team of Whitehead Institute and Broad Institute researchers have collaborated on a comprehensive, high-resolution mapping that confirms a post-transcriptional RNA modification called pseudouridylation does indeed occur naturally in messenger RNA. This is somewhat surprising finding using a new quantitative sequencing method.

EEG study findings reveal how fear is processed in the brain

September 16, 2014 8:51 am | News | Comments

Building on previous animal and human research, a new study has identified an electrophysiological marker for threat in the brain. The findings illustrate how fear arises in the brain when individuals are exposed to threatening images, and the study is the first to separate emotion from threat by controlling for the dimension of arousal, the emotional reaction provoked, whether positive or negative, in response to stimuli.

Researchers find neural compensation in people with Alzheimer’s-related protein

September 15, 2014 10:43 am | by Sarah Yang, Media Relations, UC Berkeley | News | Comments

The human brain is capable of a neural workaround that compensates for the buildup of beta-amyloid, a destructive protein associated with Alzheimer’s disease, according to a new study led by Univ. of California, Berkeley researchers. The findings could help explain how some older adults with beta-amyloid deposits in their brain retain normal cognitive function while others develop dementia.

Taking a Big Bite Out of Malaria

September 15, 2014 9:49 am | by Lindsay Hock, Managing Editor | Articles | Comments

Malaria threatens more than 40% of the world’s population and kills up to 1.2 million people worldwide each year. Many of these deaths happen in Sub-Saharan Africa in children under the age of five and pregnant woman. The estimates for clinical infection is somewhere between 300 to 500 million people each year, worldwide.

X-rays unlock a protein’s SWEET side

September 15, 2014 8:41 am | by Justin Breaux, Argonne National Laboratory | News | Comments

Sugar is a vital source of energy. Understanding just how sugar makes its way into the cell could lead to the design of better drugs for diabetes patients and an increase in the amount of fruits and vegetables farmers are able to grow. Stanford Univ. researchers have recently uncovered one of these "pathways” into the cell by piecing together proteins slightly wider than the diameter of a strand of spider silk.

Blood-cleansing biospleen device developed for sepsis therapy

September 15, 2014 8:21 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Things can go downhill fast when a patient has sepsis, a life-threatening condition in which bacteria or fungi multiply in a patient's blood—often too fast for antibiotics to help. A new device inspired by the human spleen and developed by a team at Harvard's Wyss Institute for Biologically Inspired Engineering may radically transform the way doctors treat sepsis.

Slimy fish and the origins of brain development

September 15, 2014 8:09 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer important insights about the evolutionary history of our own brain development, a recent study suggests.

Evolutionary biology key to tackling diverse global problems

September 12, 2014 10:14 am | by Pat Bailey, UC Davis News Service | News | Comments

Evolutionary biology techniques can and must be used to help solve global challenges in agriculture, medicine and environmental sciences, advises a nine-member global team led by an evolutionary ecologist from Univ. of California, Davis.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading