Advertisement
Biology
Subscribe to Biology
View Sample

FREE Email Newsletter

Microtubes create cozy space for neurons to grow

November 11, 2014 2:25 pm | by Liz Ahlberg, Physical Sciences Editor, Univ. of Illinois, Urbana-Champaign | Videos | Comments

Tiny, thin microtubes could provide a scaffold for neuron cultures to grow so that researchers can study neural networks, their growth and repair, yielding insights into treatment for degenerative neurological conditions or restoring nerve connections after injury. Researchers created the microtube platform to study neuron growth.

Archaeologists discover remains of Ice-Age infants

November 11, 2014 11:32 am | by National Science Foundation | News | Comments

The bones and teeth of two—possibly related—Ice-Age infants, who were buried more than 11,000 years ago in central Alaska, constitute the youngest human remains ever found in the North American Arctic, according to a new paper published by National Science Foundation-funded researchers.

“Antibiogram” use in nursing facilities could improve antibiotic use

November 11, 2014 10:05 am | by David Stauth, Oregon State Univ. | News | Comments

Use of “antibiograms” in skilled nursing facilities could improve antibiotic effectiveness and help address problems with antibiotic resistance. Antibiograms are tools that aid health care practitioners in prescribing antibiotics in local populations. They are based on information from microbiology laboratory tests and provide information on how likely a certain antibiotic is to effectively treat a particular infection.

Advertisement

Climate worsening watery dead zones

November 11, 2014 9:55 am | by Associated Press, Seth Borenstein | News | Comments

Global warming is likely playing a bigger role than previously thought in dead zones in oceans, lakes and rivers around the world and it's only going to get worse, according to a new study. Dead zones occur when fertilizer runoff clogs waterways with nutrients, such as nitrogen and phosphorous. That leads to an explosion of microbes that consumes oxygen and leaves the water depleted of oxygen, harming marine life.

Researchers take snapshots of potential “kill switch” for cancer

November 11, 2014 8:35 am | by SLAC Office of Communications | News | Comments

A study conducted in part at the SLAC National Accelerator Laboratory has revealed how a key human protein switches from a form that protects cells to a form that kills them—a property that scientists hope to exploit as a “kill switch” for cancer. The protein, called cIAP1, shields cells from programmed cell death, or apoptosis.

Microbot muscles: Chains of particles assemble and flex

November 11, 2014 7:57 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

In a step toward robots smaller than a grain of sand, Univ. of Michigan researchers have shown how chains of self-assembling particles could serve as electrically activated muscles in the tiny machines. So-called microbots would be handy in many areas. But several challenges lie between current technologies and science fiction possibilities. Two of the big ones are building the bots and making them mobile.

Catalyst-where-you-want-it method expands possibilities for new drug development

November 10, 2014 11:13 am | by The Scripps Research Institute | News | Comments

Chemists at The Scripps Research Institute and the Shanghai Institute of Organic Chemistry have described a method for creating and modifying organic compounds that overcomes a major limitation of previous methods. The advance opens up a large number of novel chemical structures for synthesis and evaluation, for example, as candidate pharmaceuticals.

Biochemistry detective work: Algae at night

November 10, 2014 11:05 am | by Carnegie Institute | News | Comments

Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae and select bacteria to transform the energy from sunlight during the daytime into chemical energy in the form of sugars and starches (as well as oils and proteins), and it involves taking in carbon dioxide from the air and releasing oxygen derived from water molecules.

Advertisement

Synthetic biology for space exploration

November 10, 2014 9:27 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

Does synthetic biology hold the key to manned space exploration of the moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug, and to develop clean, green and sustainable alternatives to gasoline, diesel and jet fuels. In the future, synthetic biology could also be used to make manned space missions more practical.

How human cells become immortal

November 10, 2014 8:35 am | by Dan Krotz, Lawrence Berkeley National Laboratory | News | Comments

Every day, some of your cells stop dividing, and that’s a good thing. Cells that proliferate indefinitely are immortal, an essential early step in the development of most malignant tumors. Despite its importance in cancer, the process of cell immortalization is poorly understood. That’s because scientists have lacked a good way to study immortalization in human cells as it occurs during cancer progression.

First peek at how neurons multitask

November 10, 2014 8:01 am | by Laura Williams, Univ. of Michigan | News | Comments

Researchers at the Univ. of Michigan have shown how a single neuron can perform multiple functions in a model organism, illuminating for the first time this fundamental biological mechanism and shedding light on the human brain. Investigators found that a neuron in C. elegans regulates both the speed and direction in which the worm moves.

Synthetic biology for space exploration

November 6, 2014 3:13 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Does synthetic biology hold the key to manned space exploration of the Moon and Mars? Berkeley Lab researchers have used synthetic biology to produce an inexpensive and reliable microbial-based alternative to the world’s most effective anti-malaria drug.

Getting to the root of plants’ natural sunscreen

November 5, 2014 8:18 am | by Elizabeth K. Gardner, Purdue Univ. | News | Comments

Plants bask in the sun and need its light to live, but they also coat themselves in a natural sunscreen like a sunbather on the beach, protecting themselves from damaging rays. A new study examined the properties and mechanics of the molecule plants use to absorb harmful ultraviolet-B radiation, and its SPF rating would be off the charts.

Advertisement

High-speed “label-free” imaging could reveal dangerous plaques

November 4, 2014 1:21 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers are close to commercializing a new type of medical imaging technology that could diagnose cardiovascular disease by measuring ultrasound signals from molecules exposed to a fast-pulsing laser. The system takes precise 3-D images of plaques lining arteries and identifies deposits that are likely to rupture and cause heart attacks.

Distillers grains with calcium oxide improve cattle diets

November 4, 2014 8:08 am | by Darrin Pack, Purdue Univ. | News | Comments

Research by Purdue Univ. scientist Jon Schoonmaker and his colleagues has shown that small amounts of calcium oxide can neutralize the acid in distillers grains, a commonly used alternative to corn in many livestock feed mixes. The findings are good news for beef producers hoping to provide a more nutritious, better balanced diet to their animals while keeping their feed budgets manageable.

Running robots of future may learn from world’s best two-legged runners

November 3, 2014 10:49 am | by David Stauth, Oregon State Univ. | News | Comments

With an eye toward making better running robots, researchers have made surprising new findings about some of nature’s most energy-efficient bipeds—running birds. Although birds are designed primarily for flight, scientists have learned that species that predominately live on land and scurry around on the ground are also some of the most sophisticated runners of any two-legged land animals.

Technique turns antibodies into highly tuned nanobodies

November 3, 2014 7:53 am | by Zach Veilleux, The Rockefeller Univ. | News | Comments

Antibodies, in charge of recognizing and homing in on molecular targets, are among the most useful tools in biology and medicine. Nanobodies—antibodies’ tiny cousins—can do the same tasks, for example marking molecules for research or flagging diseased cells for destruction. But, thanks to their comparative simplicity nanobodies offer the tantalizing prospect of being much easier to produce.

Lack of oxygen delayed the appearance of animals on Earth

November 1, 2014 6:46 pm | by Jim Shelton, Yale Univ. | News | Comments

Geologists are letting the air out of a nagging mystery about the development of animal life on Earth. Scientists have long speculated as to why animal species didn’t flourish sooner, once sufficient oxygen covered the Earth’s surface.

Link seen between seizures and migraines in the brain

November 1, 2014 11:59 am | by A'ndrea Elyse Messer, Penn State Univ. | News | Comments

Seizures and migraines have always been considered separate physiological events in the brain, but now a team of engineers and neuroscientists looking at the brain from a physics viewpoint discovered a link between these and related phenomena.

Researchers track ammonium source in open ocean

November 1, 2014 11:49 am | by Kevin Stacey, Brown Univ. | News | Comments

To understand the extent to which human activities are polluting Earth’s atmosphere and oceans, it’s important to distinguish human-made pollutants from compounds that occur naturally. A recent study co-authored by a Brown Univ. professor does just that for ammonium, a compound that is produced by human activities like agriculture, as well as by natural processes that occur in the ocean.

Decoding the emergence of metastatic cancer stem cells

November 1, 2014 11:15 am | by Mike Williams, Rice Univ. | News | Comments

In the first study of its kind, Rice Univ. researchers have mapped how information flows through the genetic circuits that cause cancer cells to become metastatic. The research reveals a common pattern in the decision-making that allows cancer cells to both migrate and form new tumors.

Cell division, minus the cells

October 31, 2014 12:42 pm | by Elizabeth Cooney, Harvard Univ. | News | Comments

The process of cell division is central to life. The last stage, cytokinesis, when two daughter cells split from each other, has fascinated scientists but has been notoriously difficult to study. Now Harvard Medical School systems biologists report that they have reconstituted cytokinesis, complete with signals that direct molecular traffic, without the cell.

Heart-therapy researchers develop nanobullet drug delivery system

October 31, 2014 9:52 am | News | Comments

Stanford Univ. School of Medicine researchers have developed a new formula for delivering the therapeutic peptide apelin to heart tissue for treatment of hypertrophy, a hereditary disease commonly attributed to sudden death in athletes. The nanoscale delivery system, which dramatically increases the peptide’s stability, shows promise for treating heart disease in humans, the researchers said.

Making lab-grown tissues stronger

October 31, 2014 8:54 am | by Andy Fell, UC Davis News Service | News | Comments

Lab-grown tissues could one day provide new treatments for injuries and damage to the joints, including articular cartilage, tendons and ligaments. Cartilage, for example, is a hard material that caps the ends of bones and allows joints to work smoothly. Univ. of California, Davis biomedical engineers, exploring ways to toughen up engineered cartilage and keep natural tissues strong outside the body, report new developments.

Identifying the source of stem cells

October 30, 2014 3:14 pm | News | Comments

When most animals begin life, cells immediately begin accepting assignments to become a head, tail or a vital organ. However, mammalian cells become the protective placenta or to commit to forming the baby. It’s during this critical first step that research from Michigan State Univ. has revealed key discoveries. The results provide insights into where stem cells come from, and could advance research in regenerative medicine.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading