Advertisement
Biology
Subscribe to Biology

The Lead

Nanotubes help healing hearts keep the beat

September 23, 2014 2:58 pm | Videos | Comments

A Rice Univ. team led by bioengineer Jeffrey Jacot and chemical engineer and chemist Matteo Pasquali have created new pediatric heart-defect patches infused with conductive single-walled carbon nanotubes that allow electrical signals to pass unhindered. The nanotubes overcome a limitation of current patches in which pore walls hinder the transfer of electrical signals between cardiomyocytes, the heart muscle’s beating cells.

Termites evolved complex bioreactors 30 million years ago

September 23, 2014 9:36 am | News | Comments

Achieving...

Battling superbugs

September 23, 2014 9:13 am | by Anne Trafton, MIT | News | Comments

Each year...

Bioengineers develop a toolkit for designing better synthetic molecules

September 23, 2014 9:10 am | by Bjorn Carey, Stanford Univ. | News | Comments

Synthetic...

View Sample

FREE Email Newsletter

Scientists discover an on/off switch for aging cells

September 22, 2014 10:20 am | News | Comments

Researchers at the Salk Institute have discovered an on-and-off “switch” in cells that may hold the key to healthy aging. This switch, which involves the enzyme telomerase, points to a way to encourage healthy cells to keep dividing and generating, for example, new lung or liver tissue, even in old age.

Program predicts placement of chemical tags that control gene activity

September 22, 2014 9:20 am | by Susan Brown, Univ. of California, San Diego | News | Comments

Biochemists in California have developed a program that predicts the placement of chemical marks that control the activity of genes based on sequences of DNA. By comparing sequences with and without epigenomic modification, the researchers identified DNA patterns associated with the changes. They call this novel analysis pipeline Epigram and have made both the program and the DNA motifs they identified openly available to other scientists.

Graphene sensor tracks down cancer biomarkers

September 19, 2014 4:33 pm | News | Comments

A new, ultrasensitive biosensor made from graphene has been used to detect molecules that indicate an increased risk of developing cancer. The biosensor has been shown to be more than five times more sensitive than bioassay tests currently in use, and was able to provide results in a matter of minutes, opening up the possibility of a rapid, point-of-care diagnostic tool for patients.

Advertisement

Ig Nobel winner: Using pork to stop nosebleeds

September 19, 2014 8:49 am | by Mark Pratt, Associated Press | News | Comments

There's some truth to the effectiveness of folk remedies, according to findings by a team from Detroit Medical Center. Dr. Sonal Saraiya and her colleagues in Michigan found that packing strips of cured pork in the nose of a child who suffers from uncontrollable, life-threatening nosebleeds can stop the hemorrhaging. The discovery won a 2014 Ig Nobel prize, the annual award for sometimes inane, but often practical, scientific discoveries.

Researchers study vital on/off switches of deadly bacteria

September 19, 2014 7:50 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

No matter how many times it’s demonstrated, it’s still hard to envision bacteria as social, communicating creatures. But by using a signaling system called “quorum sensing,” these single-celled organisms radically alter their behavior to suit their population. In short, some bacteria “know” how many of them are present, and act accordingly.

Sensing neuronal activity with light

September 18, 2014 12:29 pm | by Jessica Stoller-Conrad, Caltech | News | Comments

For years, neuroscientists have been trying to develop tools that would allow them to clearly view the brain's circuitry in action. To get this complete picture, neuroscientists are working to develop a range of new tools to study the brain. Researchers at Caltech have developed one such tool that provides a new way of mapping neural networks in a living organism.

New diagnostic method identifies genetic diseases

September 18, 2014 9:01 am | News | Comments

Fewer than half of all patients who are suspected of having a genetic disease actually receive a satisfactory diagnosis. To solve this problem, scientists have developed an innovative diagnostic procedure, called PhenIX, that combines the analysis of genetic irregularities with the patient's clinical presentation. The method involves a search for genes that cause disease and its related phenotypes to produce a short, testable list.

Boosting global corn yields depends on improving nutrient balance

September 18, 2014 7:40 am | by Natalie van Hoose, Purdue Univ. | News | Comments

Ensuring that corn absorbs the right balance of nitrogen, phosphorus and potassium is crucial to increasing global yields, a Purdue and Kansas State Univ. study finds. A review of data from more than 150 studies from the U.S. and other regions showed that high yields were linked to production systems in which corn plants took up key nutrients at specific ratios.

Advertisement

Sampling Methods for Microanalysis

September 17, 2014 11:48 am | by Mary L. Stellmack, McCrone Associates Inc. | McCrone Associates, Inc. | Articles | Comments

In order to identify contaminants in industrial products, it’s sometimes necessary to send samples of the contaminated material to a laboratory for analysis. The choice of sampling method and the selection of a shipping container are critical to ensure that a representative sample is obtained, and no additional foreign material (FM) is added to the sample during transport to the laboratory.

Designing more successful synthetic molecules

September 17, 2014 11:08 am | by Bjorn Carey, Stanford News Service | News | Comments

Ever since Robert Hooke first described cells in 1665, scientists have been trying to figure out what goes on inside. One of the most exciting modern techniques involves injecting cells with synthetic genetic molecules that can passively report on the cell's behavior. A new computer model could not only improve the sensitivity and success of these synthetic molecules, but also make them easier to design in the first place.

Scientists discover RNA modifications in some unexpected places

September 16, 2014 11:40 am | by Matt Fearer, Whitehead Institute | News | Comments

Deploying sophisticated high-throughput sequencing technology, a team of Whitehead Institute and Broad Institute researchers have collaborated on a comprehensive, high-resolution mapping that confirms a post-transcriptional RNA modification called pseudouridylation does indeed occur naturally in messenger RNA. This is somewhat surprising finding using a new quantitative sequencing method.

EEG study findings reveal how fear is processed in the brain

September 16, 2014 8:51 am | News | Comments

Building on previous animal and human research, a new study has identified an electrophysiological marker for threat in the brain. The findings illustrate how fear arises in the brain when individuals are exposed to threatening images, and the study is the first to separate emotion from threat by controlling for the dimension of arousal, the emotional reaction provoked, whether positive or negative, in response to stimuli.

Researchers find neural compensation in people with Alzheimer’s-related protein

September 15, 2014 10:43 am | by Sarah Yang, Media Relations, UC Berkeley | News | Comments

The human brain is capable of a neural workaround that compensates for the buildup of beta-amyloid, a destructive protein associated with Alzheimer’s disease, according to a new study led by Univ. of California, Berkeley researchers. The findings could help explain how some older adults with beta-amyloid deposits in their brain retain normal cognitive function while others develop dementia.

Advertisement

Taking a Big Bite Out of Malaria

September 15, 2014 9:49 am | by Lindsay Hock, Managing Editor | Articles | Comments

Malaria threatens more than 40% of the world’s population and kills up to 1.2 million people worldwide each year. Many of these deaths happen in Sub-Saharan Africa in children under the age of five and pregnant woman. The estimates for clinical infection is somewhere between 300 to 500 million people each year, worldwide.

X-rays unlock a protein’s SWEET side

September 15, 2014 8:41 am | by Justin Breaux, Argonne National Laboratory | News | Comments

Sugar is a vital source of energy. Understanding just how sugar makes its way into the cell could lead to the design of better drugs for diabetes patients and an increase in the amount of fruits and vegetables farmers are able to grow. Stanford Univ. researchers have recently uncovered one of these "pathways” into the cell by piecing together proteins slightly wider than the diameter of a strand of spider silk.

Blood-cleansing biospleen device developed for sepsis therapy

September 15, 2014 8:21 am | by Kristen Kusek, Wyss Institute for Biologically Inspired Engineering, Harvard Univ. | News | Comments

Things can go downhill fast when a patient has sepsis, a life-threatening condition in which bacteria or fungi multiply in a patient's blood—often too fast for antibiotics to help. A new device inspired by the human spleen and developed by a team at Harvard's Wyss Institute for Biologically Inspired Engineering may radically transform the way doctors treat sepsis.

Slimy fish and the origins of brain development

September 15, 2014 8:09 am | by Jessica Stoller-Conrad, Caltech | News | Comments

Lamprey—slimy, eel-like parasitic fish with tooth-riddled, jawless sucking mouths—are rather disgusting to look at, but thanks to their important position on the vertebrate family tree, they can offer important insights about the evolutionary history of our own brain development, a recent study suggests.

Evolutionary biology key to tackling diverse global problems

September 12, 2014 10:14 am | by Pat Bailey, UC Davis News Service | News | Comments

Evolutionary biology techniques can and must be used to help solve global challenges in agriculture, medicine and environmental sciences, advises a nine-member global team led by an evolutionary ecologist from Univ. of California, Davis.

Polonium’s most stable isotope gets revised half-life measurement

September 12, 2014 9:14 am | by NIST | News | Comments

Scientists at NIST have determined that polonium-209, the longest-lived isotope of this radioactive heavy element, has a half-life about 25% longer than the previously determined value, which had been in use for decades. The new NIST measurements could affect geophysical studies such as the dating of sediment samples from ocean and lake floors.

Alien-like giant water-living dinosaur unveiled

September 12, 2014 8:57 am | by Seth Borenstein, AP Science Writer | News | Comments

Picture the fearsome creatures of "Jurassic Park" crossed with the shark from "Jaws." Then super-size to the biggest predator ever to roam Earth. Now add a crocodile snout as big as a person and feet like a duck's. The result gives you some idea of a bizarre dinosaur scientists unveiled Thursday. This patchwork of critters, a 50-foot predator, is the only known dinosaur to live much of its life in the water.

Rapid point-of-care anemia test shows promise

September 12, 2014 8:22 am | by John Toon, Georgia Institute of Technology | News | Comments

A simple point-of-care testing device for anemia could provide more rapid diagnosis of the common blood disorder and allow inexpensive at-home self-monitoring of persons with chronic forms of the disease. The disposable self-testing device analyzes a single droplet of blood using a chemical reagent that produces visible color changes corresponding to different levels of anemia.

Findings suggest how swimming cells form biofilms on surfaces

September 12, 2014 7:59 am | by Emil Venere, Purdue Univ. | News | Comments

New research findings point toward future approaches to fighting bacterial biofilms that foul everything from implantable medical devices to industrial pipes and boat propellers. Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces.

New defense mechanism against viruses discovered

September 11, 2014 1:18 pm | News | Comments

Researchers have discovered that a known quality control mechanism in human, animal and plant cells is active against viruses. They think this new form of a so-called “innate immune defense” might represent one of the oldest defense mechanisms against viruses in evolutionary history.

Findings suggest how swimming cells form biofilms on surfaces

September 11, 2014 1:07 pm | by Emil Venere, Purdue Univ. | News | Comments

Bacteria secrete a mucus-like “extracellular polymeric substance” that forms biofilms, allowing bacterial colonies to thrive on surfaces. Costs associated with biofilms affecting medical devices and industrial equipment amount to billions of dollars annually. New research reveals specifics about interactions that induce bacteria to swim close to surfaces and attach to biofilms. This may point to future approaches for fighting biofilms.

Researchers create world’s largest DNA origami

September 11, 2014 9:35 am | by Matt Shipman, News Services, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ., Duke Univ. and the Univ. of Copenhagen have created the world’s largest DNA origami, which are nanoscale constructions with applications ranging from biomedical research to nanoelectronics. DNA origami are self-assembling biochemical structures that are made up of two types of DNA.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading