Advertisement
Beam Analysis
Subscribe to Beam Analysis

The Lead

Researchers build new fermion microscope

May 14, 2015 7:50 am | by Jennifer Chu, MIT News Office | News | Comments

Fermions are the building blocks of matter, interacting in a multitude of permutations to give rise to the elements of the periodic table. Without fermions, the physical world would not exist. Examples of fermions are electrons, protons, neutrons, quarks and atoms consisting of an odd number of these elementary particles. Because of their fermionic nature, electrons and nuclear matter are difficult to understand theoretically. 

Tuning x-rays with tiny mirrors

May 6, 2015 8:13 am | by Argonne National Laboratory | News | Comments

The secret of x-ray science, like so much else, is in the timing. Scientists at Argonne National...

The random Raman laser: A new light source for microcosmos

May 4, 2015 10:42 am | by The Optical Society | News | Comments

In modern microscope imaging techniques, lasers are used as light sources because they can...

Researchers toss around rugby-shaped hohlraums for ignition experiments

May 4, 2015 8:09 am | by Breanna Bishop, Lawrence Livermore National Laboratory | News | Comments

For several years, the National Ignition Facility (NIF) at Lawrence Livermore National...

View Sample

FREE Email Newsletter

“Freezing a bullet” to find clues to ribosome assembly process

May 4, 2015 8:00 am | by Kimm Fesenmaier, Caltech | News | Comments

Ribosomes are vital to the function of all living cells. Using the genetic information from RNA, these ribosomes build proteins by linking amino acids together in a specific order. Scientists have known that these cellular machines are themselves made up of about 80 different proteins, called ribosomal proteins, along with several RNA molecules and that these components are added in a particular sequence to construct new ribosomes.

Promising x-ray microscope poses technical challenges

May 1, 2015 10:08 am | by Breanna Bishop, Lawrence Livermore National Laboratory | News | Comments

You may think the aisles in your neighborhood convenience store are crowded, but they’d look positively spacious compared to the passageways in the NIF target bay. The target bay bristles with dozens of instruments needed for NIF experiments, ranging from inserters that hold NIF targets in place to cameras and other diagnostics that record the results of NIF shots.

How some beetles produce a scalding defensive spray

May 1, 2015 9:36 am | by David L. Chandler, MIT News Office | Videos | Comments

Bombardier beetles, which exist on every continent except Antarctica, have a pretty easy life. Virtually no other animals prey on them, because of one particularly effective defense mechanism: When disturbed or attacked, the beetles produce an internal chemical explosion in their abdomen and then expel a jet of boiling, irritating liquid toward their attackers.

Advertisement

How metal contamination makes gasoline production inefficient

May 1, 2015 8:45 am | by SLAC National Accelerator Laboratory | Videos | Comments

Scientists have identified key mechanisms of the aging process of catalyst particles that are used to refine crude oil into gasoline. This advance could lead to more efficient gasoline production. Their recent experiments studied so-called fluid catalytic cracking (FCC) particles that are used to break long-chain hydrocarbons in crude oil into smaller, more valuable hydrocarbons like gasoline.

The accelerator of the compact light source. Courtesy of Klaus Achterhold / TUM

Compact synchrotron makes tumors visible

April 30, 2015 11:39 am | by Technische Universität München | News | Comments

Soft tissue disorders like tumors are very difficult to recognize using normal X-ray machines. There is hardly any distinction between healthy tissue and tumors. Researchers at the Technische Universität München have now developed a technology using a compact synchrotron source that measures not only X-ray absorption, but also phase shifts and scattering. Tissue that is hardly recognizable using traditional X-ray machines is now visible.

Northwestern scientists develop first liquid nanolaser

April 27, 2015 12:12 pm | by Megan Fellman, Northwestern University | News | Comments

Northwestern University scientists have developed the first liquid nanoscale laser. And it’s tunable in real time, meaning you can quickly and simply produce different colors, a unique and useful feature. The laser technology could lead to practical applications, such as a new form of a “lab on a chip” for medical diagnostics.

Daniel Wilson Ph.D. researcher with UAV and drogue

Sky-high refuelling for UAVs

April 24, 2015 11:13 am | by Univ. of Sydney | News | Comments

A Univ. of Sydney researcher has designed and successfully tested a method for autonomously docking drones for refueling or recharging, in mid-air. He used a combination of precise measurements from an infrared camera, with GPS and inertial sensors to allow the sky-high docking to occur.

Portable MRI could aid wounded soldiers in Third World

April 24, 2015 8:37 am | by Kevin Roark, Los Alamos National Laboratory | News | Comments

Scientists at Los Alamos National Laboratory are developing an ultra-low-field magnetic resonance imaging system that could be low-power and lightweight enough for forward deployment on the battlefield and to field hospitals in the world's poorest regions.

Advertisement

Zeroing in on a silent killer

April 24, 2015 8:16 am | by Robert Perkins, Univ. of Southern California | News | Comments

One in three Americans has high blood pressure, a long-term constriction of arteries that can lead to coronary heart disease, heart failure and stroke. Using a sophisticated x-ray analysis, a U.S.-German team of scientists revealed the molecular structure of the angiotensin receptor AT1R, an important regulator for blood pressure in the human body.

Under certain conditions, two individual, indistinguishable photons will form a pair as a result of interference. This subtle quantum effect has been successfully imaged for the first time by Michał Jachura and Radosław Chrapkiewicz, doctoral students at

Quantum ‘paparazzi’ film photons in the act of pairing up

April 23, 2015 11:34 am | by University of Warsaw | News | Comments

In the quantum world of light, being distinguishable means staying lonely. Only those photons that are indistinguishable can wind up in a pair, through what is called Hong-Ou-Mandel interference. This subtle quantum effect has been successfully imaged for the first time by two doctoral students from the Faculty of Physics at the University of Warsaw.

High-power diode laser module for space applications: Micro-integrated Extended Cavity Diode Laser (ECDL) for laser spectroscopy of rubidium atoms in space. This module has been used on April 23 for tests on board the FOKUS research rocket aiming to demon

Examining Einstein – precise experiments using lasers in space

April 23, 2015 11:20 am | by Forschungsverbund Berlin | News | Comments

Albert Einstein tells us that clocks run slower the deeper they are in the gravitational potential well of a mass. This effect is described by General Relativity Theory as the gravitational red shift. General Relativity Theory also predicts that the rates of all clocks are equally influenced by gravitation independent of how these clocks are physically or technically constructed. However, more recent theories of gravitation...

Combing through terahertz waves

April 22, 2015 8:02 am | by Kimm Fesenmaier, Caltech | News | Comments

Light can come in many frequencies, only a small fraction of which can be seen by humans. Between the invisible low-frequency radio waves used by cell phones and the high frequencies associated with infrared light lies a fairly wide swath of the electromagnetic spectrum occupied by what are called terahertz, or sometimes submillimeter, waves.

Nanophotonics with ultracold atoms for simulating quantum many-body systems

April 21, 2015 10:46 am | by Max Planck Society | News | Comments

Ultracold atoms in the so-called optical lattices, which are generated by crosswise superposition of laser beams, have proven to be one of the most promising tools for simulating and understanding the behavior of many-body systems. However, the implementation in free space has some limitations such as the distance between the atoms (around 400 nm) and the short range of the interactions.

Advertisement

Better battery imaging paves way for renewable energy future

April 21, 2015 8:04 am | by Univ. of Wisconsin-Madison | News | Comments

In a move that could improve the energy storage of everything from portable electronics to electric microgrids, Univ. of Wisconsin-Madison and Brookhaven National Laboratory researchers have developed a novel x-ray imaging technique to visualize and study the electrochemical reactions in lithium-ion rechargeable batteries containing a new type of material, iron fluoride.

New tabletop detector “sees” single electrons

April 21, 2015 7:37 am | by Jennifer Chu, MIT News Office | News | Comments

Massachusetts Institute of Technology physicists have developed a new tabletop particle detector that is able to identify single electrons in a radioactive gas. As the gas decays and gives off electrons, the detector uses a magnet to trap them in a magnetic bottle. A radio antenna then picks up very weak signals emitted by the electrons, which can be used to map the electrons’ precise activity over several milliseconds.

RHIC smashes record for polarized proton luminosity

April 15, 2015 7:34 am | by Karen McNulty Walsh, Brookhaven National Laboratory | News | Comments

The Relativistic Heavy Ion Collider just shattered its own record for producing polarized proton collisions at 200-GeV collision energy. In the experimental run currently underway at this two-ringed, 2.4-mile-circumference particle collider, accelerator physicists are now delivering 1,200 billion of these subatomic smashups per week.

30 years and counting, the x-ray laser lives on

April 14, 2015 11:46 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

More than 50 years ago, when the laser was a mere five years old, laser physicists dreamed of the development of an x-ray laser to expand the frontier of knowledge. The concept goes back to the mid-1960s, when scientists realized that laser beams amplified with ions would have much shorter wavelengths than beams amplified with gas.

Why skin is resistant to tearing

April 14, 2015 8:21 am | by Ioana Patringenaru, Univ. of California, San Diego | News | Comments

Skin is remarkably resistant to tearing and a team of researchers from the Univ. of California, San Diego and the Lawrence Berkeley National Laboratory now have shown why. Using powerful x-ray beams and electron microscopy, researchers made the first direct observations of the micro-scale mechanisms that allow skin to resist tearing.

Mixing up a batch of stronger metals

April 9, 2015 8:09 am | by Katie Bethea, Oak Ridge National Laboratory | News | Comments

Just as a delicate balance of ingredients determines the tastiness of a cookie or cake, the specific ratio of metals in an alloy determines desirable qualities of the new metal, such as improved strength or lightness. A new class of alloys, called high entropy alloys, is unique in that these alloys contain five or more elements mixed evenly in near equal concentrations and have shown exceptional engineering properties.

Tracking ultra-fast creation of a catalyst

April 1, 2015 2:26 pm | by SLAC National Accelerator Laboratory | News | Comments

An international team has, for the first time, precisely tracked the surprisingly rapid process by which light rearranges the outermost electrons of a metal compound and turns it into an active catalyst, a substance that promotes chemical reactions. The results could help in the effort to develop novel catalysts to efficiently produce fuel using sunlight.

Skin tough

April 1, 2015 7:31 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

When weighing the pluses and minuses of your skin add this to the plus column: Your skin, like that of all vertebrates, is remarkably resistant to tearing. Now, a collaboration of researchers at Lawrence Berkeley National Laboratory and the Univ. of California, San Diego, has shown why.

Microsecond Raman imaging might probe cells, organs for disease

March 30, 2015 1:03 pm | by Emil Venere, Purdue Univ. | News | Comments

A vibrational spectroscopic imaging technology that can take images of living cells could represent an advanced medical diagnostic tool for the early detection of cancer and other diseases. High-speed spectroscopic imaging makes it possible to observe the quickly changing metabolic processes inside living cells and to image large areas of tissue, making it possible to scan an entire organ.

Physicists solve low-temperature magnetic mystery

March 27, 2015 8:19 am | by Chelsea Whyte, Brookhaven National Laboratory | News | Comments

Researchers have made an experimental breakthrough in explaining a rare property of an exotic magnetic material, potentially opening a path to a host of new technologies. From information storage to magnetic refrigeration, many of tomorrow's most promising innovations rely on sophisticated magnetic materials, and this discovery opens the door to harnessing the physics that governs those materials. 

Using magnetic fields to understand high-temperature superconductivity

March 27, 2015 7:44 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Taking our understanding of quantum matter to new levels, scientists at Los Alamos National Laboratory are exposing high-temperature superconductors to very high magnetic fields, changing the temperature at which the materials become perfectly conducting and revealing unique properties of these substances.

Protein shake-up

March 26, 2015 10:47 am | by Chris Samoray, Oak Ridge National Laboratory | News | Comments

For living organisms proteins are an essential part of their body system and are needed to thrive. In recent years, a certain class of proteins has challenged researchers’ conventional notion that proteins have a static and well-defined structure. It’s thought that mutations in these proteins, known as intrinsically disordered proteins, are associated with neurodegenerative changes, cardiovascular disorders and diseases like cancer.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading