Advertisement
Astrophysics
Subscribe to Astrophysics
View Sample

FREE Email Newsletter

MAVEN’s first look at Mars holds surprises

October 15, 2014 8:06 am | by Jim Scott, CU-Boulder Media Relations | News | Comments

NASA’s MAVEN spacecraft has provided scientists their first look at a storm of energetic solar particles at Mars and produced unprecedented ultraviolet images of the tenuous oxygen, hydrogen and carbon coronas surrounding the Red Planet. In addition, the new observations allowed scientists to make a comprehensive map of highly variable ozone in the Martian atmosphere underlying the coronas.

Rediscovering Venus to find faraway Earths

October 14, 2014 9:12 am | News | Comments

Astronomers Chih-Hao Li and David Phillips of the Harvard-Smithsonian Center for Astrophysics want to rediscover Venus. They plan to “find” the second planet again using a powerful new optical device installed on the Italian National Telescope that will measure Venus' precise gravitational pull on the sun. If they succeed, their first-of-its-kind demonstration will be later used for finding Earth-like exoplanets orbiting distant stars.

Mars One (and done?)

October 14, 2014 7:43 am | by Jennifer Chu, MIT News Office | News | Comments

In 2012, the Mars One project, led by a Dutch nonprofit, announced plans to establish the first human colony on the Red Planet by 2025. The mission would initially send four astronauts on a one-way trip to Mars, where they would spend the rest of their lives building the first permanent human settlement.

Advertisement

Leaky, star-forming galaxies help researchers better understand the universe

October 10, 2014 10:57 am | by Tracey Reeves, Johns Hopkins Univ. | News | Comments

By focusing on large, star-forming galaxies in the universe, researchers at Johns Hopkins Univ. were able to measure its radiation leaks in an effort to better understand how the universe evolved as the first stars were formed. The team reports in a paper published online in Science that an indicator used for studying star-forming galaxies that leak radiation, is an effective measurement tool for other scientists to use.

Researchers detect brightest pulsar ever recorded

October 9, 2014 8:09 am | by Jennifer Chu, MIT News Office | News | Comments

Astronomers have detected a pulsating dead star that appears to be burning with the energy of 10 million suns, making it the brightest pulsar ever detected. The pulsar—a rotating, magnetized neutron star—was found in the galaxy Messier 82 (M82), a relatively close galactic neighbor that’s 12 million light-years from Earth.

Simulations reveal an unusual death for ancient stars

September 29, 2014 11:01 am | by Linda Vu, Lawrence Berkeley National Laboratory | News | Comments

Certain primordial stars—those between 55,000 and 56,000 times the mass of our sun, or solar masses—may have died unusually. In death, these objects—among the universe’s first-generation of stars—would have exploded as supernovae and burned completely, leaving no remnant black hole behind.

New molecule found in space connotes life origins

September 29, 2014 8:43 am | by Blaine Friedlander, Cornell Univ. | News | Comments

Hunting from a distance of 27,000 light years, astronomers have discovered an unusual carbon-based molecule—one with a branched structure—contained within a giant gas cloud in interstellar space. Like finding a molecular needle in a cosmic haystack, astronomers have detected radio waves emitted by isopropyl cyanide. The discovery suggests that the complex molecules needed for life may have their origins in interstellar space.

NASA finds clear skies and water vapor on exoplanet

September 26, 2014 8:42 am | News | Comments

Astronomers using data from NASA's space telescopes Hubble, Spitzer, and Kepler have discovered clear skies and steamy water vapor on a gaseous planet outside our solar system. The planet is about the size of Neptune, making it the smallest planet from which molecules of any kind have been detected.

Advertisement

The water in your bottle might be older than the sun

September 26, 2014 8:13 am | by Nicole Casal Moore, Univ. of Michigan | News | Comments

Up to half of the water on Earth is likely older than the solar system itself, Univ. of Michigan astronomers theorize. The researchers' work helps to settle a debate about just how far back in galactic history our planet and our solar system's water formed. Were the molecules in comet ices and terrestrial oceans born with the system itself—in the planet-forming disk of dust and gas that circled the young sun 4.6 billion years ago?

Solar explosions inside a computer

September 25, 2014 8:44 am | News | Comments

Strong solar flares can bring down communications and power grids on Earth. Physicists in Switzerland have examined the processes that take place when explosions occur on the Sun’s surface and have accurately reconstructed the statistical size distribution and temporal succession of the solar flares with a computer model. This has allowed them to make several new observations about the how these flares occur and behave.

First evidence for water ice clouds found outside solar system

September 9, 2014 12:22 pm | Videos | Comments

A team of scientists led by Carnegie's Jacqueline Faherty has discovered the first evidence of water ice clouds on an object outside of our own Solar System. Water ice clouds exist on our own gas giant planets, but have not been seen outside of the planets orbiting our Sun until now.

Scientist explores birth of a planet

September 8, 2014 1:53 pm | News | Comments

Dr. John Carr, a scientist at the U.S. Naval Research Laboratory, is part of an international team that has found what they believe is evidence of a planet forming around a star about 335 light years from Earth. They made the chance discovery while studying the protoplanetary disk of gas around a distant forming star using a technique called spectro-astrometry, which allows astronomers to detect small changes in the position of moving gas.

Single laser stops molecular tumbling motion instantly

September 2, 2014 8:26 am | News | Comments

In the quantum world, making the simple atom behave is one thing, but making the more complex molecule behave is another story. Now Northwestern Univ. scientists have figured out an elegant way to stop a molecule from tumbling so that its potential for new applications can be harnessed: shine a single laser on a trapped molecule and it instantly cools to the temperature of outer space, stopping the rotation of the molecule.

Advertisement

Astronomers see the birth of a massive galaxy, hidden by dust

August 28, 2014 9:17 am | by Jim Shelton, Yale Univ. | News | Comments

Yale Univ. astronomers have discovered a window into the early, violent formation of the cores of the universe’s monster galaxies, obscured behind walls of dust. After years of searching, scientists have observed one such turbulent, starbursting galactic core in the young universe using the NASA/ESA Hubble Space Telescope and a telescope from the W.M. Keck Observatory in Hawaii.

Pebble-sized particles may jump-start planet formation

August 27, 2014 12:10 pm | News | Comments

Astronomers using the Green Bank Telescope have discovered that filaments of star-forming gas near the Orion Nebula may be brimming with pebble-size particles: planetary building blocks 100 to 1,000 times larger than the dust grains typically found around protostars. If confirmed, these dense ribbons of rocky material may well represent a new, mid-size class of interstellar particles that could help jump-start planet formation.

Do we live in a 2-D hologram?

August 26, 2014 1:16 pm | by Fermi National Accelerator Laboratory | News | Comments

A unique experiment at the Fermi National Accelerator Laboratory called the Holometer has started collecting data that will answer some mind-bending questions about our universe—including whether we live in a hologram. Much like characters on a television show would not know that their seemingly 3-D world exists only on a 2-D screen, we could be clueless that our 3-D space is just an illusion.

Calculating conditions at the birth of the universe

August 26, 2014 8:06 am | by Anne M. Stark, Lawrence Livermore National Laboraotry | News | Comments

Using a calculation originally proposed seven years ago to be performed on a petaflop computer, Lawrence Livermore National Laboratory researchers computed conditions that simulate the birth of the universe. When the universe was less than one microsecond old and more than one trillion degrees, it transformed from a plasma of quarks and gluons into bound states of quarks.

Electric sparks may alter evolution of lunar soil

August 22, 2014 8:18 am | by David Sims, Institute for the Study of Earth, Oceans and Space, Univ. of New Hampshire | News | Comments

The moon appears to be a tranquil place, but modeling done by Univ. of New Hampshire and NASA scientists suggests that, over the eons, periodic storms of solar energetic particles may have significantly altered the properties of the soil in the moon’s coldest craters through the process of sparking—a finding that could change our understanding of the evolution of planetary surfaces in the solar system.

Univ. of Washington project becomes focal point in hunt for dark matter

August 21, 2014 8:47 am | by Vince Stricherz, News and Information, Univ. of Washington | News | Comments

Three major experiments aimed at detecting elusive dark matter particles believed to make up most of the matter in the universe have gotten a financial shot in the arm. Two of the projects are at large national laboratories; the other is at the Univ. of Washington (UW). The selection will bring greater intensity to the UW research, with more equipment and scientists involved in the work.

Mysteries of space dust revealed

August 18, 2014 8:03 am | by Kate Greene, Lawrence Berkeley National Laboratory | News | Comments

The first analysis of space dust collected by a special collector onboard NASA’s Stardust mission and sent back to Earth for study in 2006 suggests the tiny specks, which likely originated from beyond our solar system, are more complex in composition and structure than previously imagined. The analysis opens a door to studying the origins of the solar system and possibly the origin of life itself.

Seven tiny grains captured by Stardust likely visitors from intersteller space

August 15, 2014 11:30 am | by Robert Sanders, Univ. of California, Berkeley | News | Comments

Since 2006, when NASA’s Stardust spacecraft delivered its aerogel and aluminum foil dust collectors back to Earth, a team of scientists has combed through them. They now report finding seven dust motes that probably came from outside our solar system, perhaps created in a supernova explosion and altered by eons of exposure to the extremes of space. They would be the first confirmed samples of contemporary interstellar dust.

Follow the radio waves to exomoons

August 12, 2014 8:26 am | News | Comments

Scientists hunting for life beyond Earth have discovered more than 1,800 planets outside our solar system, or exoplanets, in recent years, but so far, no one has been able to confirm an exomoon. Now, physicists from The Univ. of Texas at Arlington believe following a trail of radio wave emissions may lead them to that discovery.

How do you feed a hungry quasar?

August 11, 2014 8:08 am | by Jim Shelton, Yale Univ. | News | Comments

The universe’s oldest, brightest beacons may have gorged themselves in the dense, cold, gas flows of the early cosmos—creating a kind of energy drink for infant black holes in the young universe—according to new research by scientists at Yale Univ. and the Weizmann Institute in Israel.

Comet joined by space probe after 10-year pursuit

August 7, 2014 3:45 pm | by Frank Jordans, Associated Press | News | Comments

Turning what seemed like a science fiction tale into reality, an unmanned probe swung alongside a comet on Wednesday after a 4-billion mile chase through outer space over the course of a decade. Europe's Rosetta probe will orbit and study the giant lump of dust and ice as it hurtles toward the sun and, if all goes according to plan, drop a lander onto the comet in the coming months.

NASA’s IBEX and Voyager spacecraft drive advances in outer heliosphere research

August 4, 2014 11:52 am | News | Comments

The million-mile-per-hour solar wind pushed out by the Sun inflates a giant bubble in the interstellar medium called the heliosphere, which envelops the Earth and the other planets. At the 40th International Committee on Space Research (COSPAR) Scientific Assembly in Moscow this week, scientists highlighted an impressive list of achievements in researching the outer heliosphere, which barely registered as a field of research ten years ago.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading