Advertisement
Solar Energy
Subscribe to Solar Energy
View Sample

FREE Email Newsletter

Researchers harness sun’s energy during day for use at night

January 14, 2014 2:22 pm | News | Comments

Solar energy has long been used as a clean alternative to fossil fuels such as coal and oil, but it could only be harnessed during the day when the sun’s rays were strongest. Now researchers have built a system that converts the sun’s energy not into electricity but hydrogen fuel and stores it for later use, allowing us to power our devices long after the sun goes down.

Cobalt catalysts allow researchers to duplicate complicated steps of photosynthesis

January 13, 2014 4:19 pm | News | Comments

Humans have for ages taken cues from nature to build their own devices, but duplicating the steps in the complicated electronic dance of photosynthesis remains one of the biggest challenges and opportunities for chemists. Currently, the most efficient methods we have for making fuel from sunlight and water involve rare and expensive metal catalysts. However, that is about to change.

Inverse opal structure improves thin-film solar cells

January 13, 2014 3:59 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to increase the efficiency of thin-film solar cells, a technology that could bring low-cost solar energy. The approach uses 3-D photonic crystals to absorb more sunlight than conventional thin-film cells. The synthetic crystals possess a structure called an inverse opal to make use of and enhance properties found in the gemstones to reflect, diffract and bend incoming sunlight.

Advertisement

A cheaper method of storing solar energy

January 8, 2014 9:45 am | News | Comments

By replacing platinum with molybdenum in photoelectrochemical cells, scientists from two Swiss labs have developed a cheaper and scalable technique that can greatly improve hydrogen production through water splitting as a means of storing solar energy.

Researchers find simple, cheap way to increase solar cell efficiency

January 6, 2014 7:42 am | News | Comments

Researchers from North Carolina State Univ. and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30%. Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material.

Solar panels perform better when listening to music

December 18, 2013 11:52 am | by Simon Levy, London Centre for Nanotechnology | News | Comments

The sound vibrations that make up music can make solar panels work harder, according to new research, and pop music performs better than classical. Scientists showed that high pitched sounds like those common in pop and rock music caused the greatest improvement in the solar cells' power output, increasing it by up to 40%.

Quantum waves at the heart of organic solar cells

December 12, 2013 2:47 pm | News | Comments

Researchers have tuned coherence in organic nanostructures due to the surprise discovery of wave-like electrons in organic materials, revealing the key to generating long-lived charges in organic solar cells. By using an ultra-fast camera, scientists have observed the very first instants following the absorption of light into artificial, organic nanostructures and found that charges formed rapidly and separated quickly over long distances.

New material could make solar panels cheaper, more efficient

December 11, 2013 3:10 pm | News | Comments

A unique solar panel design made with a new ceramic material points the way to potentially providing sustainable power cheaper, more efficiently, and requiring less manufacturing time. It also reaches a four-decade-old goal of discovering a bulk photovoltaic material that can harness energy from visible and infrared light, not just ultraviolet light.

Advertisement

Nontoxic quantum dot research improves solar cells

December 11, 2013 7:50 am | News | Comments

Solar cells made with low-cost, nontoxic quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corp. The reported solar cells are based on nontoxic quantum dots. These dots are based on copper indium selenide sulfide and are rigorously optimized to reduce charge-carrier losses from surface defects and to provide the most complete coverage of the solar spectrum.

Solar cell degradation observed directly for the first time

December 10, 2013 9:07 am | News | Comments

With the help of the x-ray light source PETRA III, researchers in Germany have, for the first time, watched organic solar cells degrade in real time. This work could open new approaches to increasing the stability of this highly promising type of solar cell, which is known for its flexibility and low cost but has a short lifespan.

Industry Breakout - Energy

December 9, 2013 6:04 am | by R&D Magazine/Battelle | Articles | Comments

The energy industry includes a broad array of companies, ranging from multinational oil and gas firms to large and small technology firms. Reducing costs of production is a large driver of R&D in the energy space, and materials development and advanced materials integration are increasingly important in shaping the industry’s R&D investment.

Characterizing solar cells with nanoscale precision

December 5, 2013 9:23 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have demonstrated a new low-energy electron beam technique and used it to probe the nanoscale electronic properties of grain boundaries and grain interiors in cadmium telluride (CdTe) solar cells. Their results suggest that controlling material properties near the grain boundaries could provide a path for increasing the efficiency of such solar cells.

SolarCity to back up solar with Tesla batteries

December 5, 2013 12:36 am | by Jonathan Fahey, AP Energy Writer | News | Comments

The solar panel installer SolarCity is beginning to address one of solar power's big drawbacks: The sun doesn't always shine. The solution: big battery packs that will provide backup power while lowering electric bills. The supplier: electric car maker Tesla Motors, whose CEO Elon Musk is also the chairman of SolarCity.

Advertisement

Researchers to map step-by-step mechanism of photosynthesis

December 4, 2013 8:32 am | News | Comments

With support from the Photosynthetic Systems Div. at the U.S. Dept. of Energy, researchers in the School of Science at Rensselaer Polytechnic Institute are expanding a successful research program to uncover the minute workings of the photosynthetic protein, Photosystem II. The high-impact research, led by prof. K.V. Lakshmi, seeks to adapt photosynthesis for artificial use as an abundant source of renewable energy.

Scientists combine antennas with solar panels

December 3, 2013 7:56 am | News | Comments

Researchers in Switzerland have managed to combine antennas and solar cells to work together with unprecedented efficiency in a near future. This is a first step towards more compact and more lightweight satellites. The technology could also be deployed in the autonomous antenna systems used in the aftermath of natural disasters.

Scientists stitch up photosynthetic megacomplex

December 2, 2013 9:23 am | News | Comments

When sunlight strikes a photosynthesizing organism, energy flashes between proteins just beneath its surface until it is trapped as separated electric charges. Improbable as it may seem, these tiny hits of energy eventually power the growth and movement of all plants and animals. They are literally the sparks of life.

SunPartner Technologies, 3M to deliver wireless transparent solar charging system

November 22, 2013 3:56 pm | News | Comments

SunPartner Technologies and 3M Company have announced an agreement to collaborate in product development and technical solutions based on engineered electronics materials from 3M and transparent solar cell technologies from Sunpartner Technologies. The two companies are developing a sustainable wireless transparent micro component that will charge devices while they are being used and exposed to light.

Copper promises cheaper, sturdier fuel cells

November 22, 2013 11:01 am | News | Comments

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. Chemists have commonly tried to use indium tin oxide (ITO) because it has transparency, but it also expensive and rare. Researchers at Duke Univ. has created something they hope can replace ITO: copper nanowires fused in a see-through film.

Researchers in Germany build bio-based solar cell

November 21, 2013 12:46 pm | News | Comments

In leaves, two proteins are responsible for photosynthesis, and they perform the conversion of carbon dioxide into oxygen and biomass very efficiently. Scientists have now harnessed this capability by embedding these proteins into complex molecules developed in the laboratory. Their bio-based solar cell creates electron current instead of biomass.

Study could lead to paradigm shift in organic solar cell research

November 20, 2013 8:19 am | by Mike Shwartz, Stanford Univ. | News | Comments

Organic solar cells have long been touted as lightweight, low-cost alternatives to rigid solar panels made of silicon. Dramatic improvements in the efficiency of organic photovoltaics have been made in recent years, yet the fundamental question of how these devices convert sunlight into electricity is still hotly debated. Now a Stanford Univ. research team is weighing in on the controversy.

Refined materials provide booster shot for solar energy conversion

November 18, 2013 12:32 pm | News | Comments

An interdisciplinary team of researchers has set its sights on improving the materials that make solar energy conversion/photocatalysis possible. Together, they have developed a new form of high-performance solar photocatalyst based on the combination of the titanium dioxide and other “metallic” oxides that greatly enhance the visible light absorption and promote more efficient utilization of the solar spectrum for energy applications.

Team demonstrates new paradigm for solar cell construction

November 12, 2013 8:53 am | News | Comments

Researchers from the Univ. of Pennsylvania and Drexel Univ. have experimentally demonstrated a new method for solar cell construction which may ultimately make them less expensive, easier to manufacture and more efficient at harvesting energy from the sun. The breakthrough, which is the result of five years of focused research, relies on specifically designed perovskite crystals that deliver a “bulk” photovoltaic effect.

Big beats bolster solar cell efficiency

November 6, 2013 11:31 am | News | Comments

Playing pop and rock music improves the performance of solar cells, according to new research. The high frequencies and pitch found in pop and rock music cause vibrations that enhanced energy generation in solar cells containing a cluster of 'nanorods', leading to a 40 percent increase in efficiency of the solar cells.

A toolbox for carbon dioxide-free buildings

November 5, 2013 4:32 pm | News | Comments

A set of new building technologies introduced by an alliance of Swiss companies makes it possible to heat and cool buildings without the emission of carbon dioxide. One initial key element of the system is a hybrid collector, built into the roof construction, that serves as a photovoltaic system delivering both solar power and heat that is fed to an underground accumulator.

EPFL's campus has the world's first solar window

November 5, 2013 4:08 pm | News | Comments

The Swiss Federal Institute of Technology in Lausanne’s new convention center, opening in April 2014, is being equipped with a glass façade composed of dye solar cells. The project, a world’s first for an exterior window, leverages the potential of dye-sensitive solar cells known as Graetzel cells, which are indifferent to the angle of incidence of light that hits them.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading