Advertisement
Solar Energy
Subscribe to Solar Energy
View Sample

FREE Email Newsletter

Getting a charge from changes in humidity

January 27, 2014 11:15 am | News | Comments

A new type of electrical generator uses bacterial spores to harness the untapped power of evaporating water, according to research conducted at the Wyss Institute of Biologically Inspired Engineering at Harvard Univ. Its developers foresee electrical generators driven by changes in humidity from sun-warmed ponds and harbors.

Solar cell technology captures high-energy photons more efficiently

January 24, 2014 8:38 am | News | Comments

Getting the blues is rarely a desirable experience—unless you’re a solar cell, that is. Scientists at Argonne National Laboratory and the Univ. of Texas at Austin have together developed a new, inexpensive material that has the potential to capture and convert solar energy—particularly from the bluer part of the spectrum—much more efficiently than ever before.

Maximizing solar cells

January 22, 2014 11:34 am | News | Comments

As part of his PhD, postdoctoral research fellow Dr. Daniel Tune in Australia has designed a computer modelling system that shows which combination of carbon nanotubes absorb the most sunlight, therefore providing the most energy. In 2011, researchers in the U.S. successfully fabricated a solar cell using carbon nanotubes, but there are more than 70 different types of carbon nanotube that could be used in such solar cells.

Advertisement

From a carpet of nanorods to a thin film solar cell absorber within seconds

January 22, 2014 11:14 am | News | Comments

Researchers in Ireland and Germany have discovered a novel solid state reaction which lets kesterite grains grow within a few seconds and at relatively low temperatures. The work points towards a new pathway for the fabrication of thin microcrystalline semiconductor films without the need of expensive vacuum technology.

Understanding perovskite-based solar cells

January 22, 2014 9:18 am | News | Comments

In only a few years, the efficiency of perovskite-based solar cells has increased from 3% to more than 16%. However, a detailed explanation of the mechanisms of operation within this photovoltaic system is still lacking. in recent work, scientists have now uncovered the mechanism by which these novel light-absorbing semiconductors transfer electrons along their surface.

How to tap the sun’s energy through heat as well as light

January 20, 2014 7:43 am | by David L. Chandler, MIT News Office | Videos | Comments

A new approach to harvesting solar energy, developed by Massachusetts Institute of Technology researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would then be collected by a conventional photovoltaic cell. This technique could also make it easier to store the energy for later use, the researchers say.

Researchers harness sun’s energy during day for use at night

January 14, 2014 2:22 pm | News | Comments

Solar energy has long been used as a clean alternative to fossil fuels such as coal and oil, but it could only be harnessed during the day when the sun’s rays were strongest. Now researchers have built a system that converts the sun’s energy not into electricity but hydrogen fuel and stores it for later use, allowing us to power our devices long after the sun goes down.

Cobalt catalysts allow researchers to duplicate complicated steps of photosynthesis

January 13, 2014 4:19 pm | News | Comments

Humans have for ages taken cues from nature to build their own devices, but duplicating the steps in the complicated electronic dance of photosynthesis remains one of the biggest challenges and opportunities for chemists. Currently, the most efficient methods we have for making fuel from sunlight and water involve rare and expensive metal catalysts. However, that is about to change.

Advertisement

Inverse opal structure improves thin-film solar cells

January 13, 2014 3:59 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to increase the efficiency of thin-film solar cells, a technology that could bring low-cost solar energy. The approach uses 3-D photonic crystals to absorb more sunlight than conventional thin-film cells. The synthetic crystals possess a structure called an inverse opal to make use of and enhance properties found in the gemstones to reflect, diffract and bend incoming sunlight.

A cheaper method of storing solar energy

January 8, 2014 9:45 am | News | Comments

By replacing platinum with molybdenum in photoelectrochemical cells, scientists from two Swiss labs have developed a cheaper and scalable technique that can greatly improve hydrogen production through water splitting as a means of storing solar energy.

Researchers find simple, cheap way to increase solar cell efficiency

January 6, 2014 7:42 am | News | Comments

Researchers from North Carolina State Univ. and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30%. Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material.

Solar panels perform better when listening to music

December 18, 2013 11:52 am | by Simon Levy, London Centre for Nanotechnology | News | Comments

The sound vibrations that make up music can make solar panels work harder, according to new research, and pop music performs better than classical. Scientists showed that high pitched sounds like those common in pop and rock music caused the greatest improvement in the solar cells' power output, increasing it by up to 40%.

Quantum waves at the heart of organic solar cells

December 12, 2013 2:47 pm | News | Comments

Researchers have tuned coherence in organic nanostructures due to the surprise discovery of wave-like electrons in organic materials, revealing the key to generating long-lived charges in organic solar cells. By using an ultra-fast camera, scientists have observed the very first instants following the absorption of light into artificial, organic nanostructures and found that charges formed rapidly and separated quickly over long distances.

Advertisement

New material could make solar panels cheaper, more efficient

December 11, 2013 3:10 pm | News | Comments

A unique solar panel design made with a new ceramic material points the way to potentially providing sustainable power cheaper, more efficiently, and requiring less manufacturing time. It also reaches a four-decade-old goal of discovering a bulk photovoltaic material that can harness energy from visible and infrared light, not just ultraviolet light.

Nontoxic quantum dot research improves solar cells

December 11, 2013 7:50 am | News | Comments

Solar cells made with low-cost, nontoxic quantum dots can achieve unprecedented longevity and efficiency, according to a study by Los Alamos National Laboratory and Sharp Corp. The reported solar cells are based on nontoxic quantum dots. These dots are based on copper indium selenide sulfide and are rigorously optimized to reduce charge-carrier losses from surface defects and to provide the most complete coverage of the solar spectrum.

Solar cell degradation observed directly for the first time

December 10, 2013 9:07 am | News | Comments

With the help of the x-ray light source PETRA III, researchers in Germany have, for the first time, watched organic solar cells degrade in real time. This work could open new approaches to increasing the stability of this highly promising type of solar cell, which is known for its flexibility and low cost but has a short lifespan.

Industry Breakout - Energy

December 9, 2013 6:04 am | by R&D Magazine/Battelle | Articles | Comments

The energy industry includes a broad array of companies, ranging from multinational oil and gas firms to large and small technology firms. Reducing costs of production is a large driver of R&D in the energy space, and materials development and advanced materials integration are increasingly important in shaping the industry’s R&D investment.

Characterizing solar cells with nanoscale precision

December 5, 2013 9:23 am | News | Comments

Researchers from the NIST Center for Nanoscale Science and Technology (CNST) have demonstrated a new low-energy electron beam technique and used it to probe the nanoscale electronic properties of grain boundaries and grain interiors in cadmium telluride (CdTe) solar cells. Their results suggest that controlling material properties near the grain boundaries could provide a path for increasing the efficiency of such solar cells.

SolarCity to back up solar with Tesla batteries

December 5, 2013 12:36 am | by Jonathan Fahey, AP Energy Writer | News | Comments

The solar panel installer SolarCity is beginning to address one of solar power's big drawbacks: The sun doesn't always shine. The solution: big battery packs that will provide backup power while lowering electric bills. The supplier: electric car maker Tesla Motors, whose CEO Elon Musk is also the chairman of SolarCity.

Researchers to map step-by-step mechanism of photosynthesis

December 4, 2013 8:32 am | News | Comments

With support from the Photosynthetic Systems Div. at the U.S. Dept. of Energy, researchers in the School of Science at Rensselaer Polytechnic Institute are expanding a successful research program to uncover the minute workings of the photosynthetic protein, Photosystem II. The high-impact research, led by prof. K.V. Lakshmi, seeks to adapt photosynthesis for artificial use as an abundant source of renewable energy.

Scientists combine antennas with solar panels

December 3, 2013 7:56 am | News | Comments

Researchers in Switzerland have managed to combine antennas and solar cells to work together with unprecedented efficiency in a near future. This is a first step towards more compact and more lightweight satellites. The technology could also be deployed in the autonomous antenna systems used in the aftermath of natural disasters.

Scientists stitch up photosynthetic megacomplex

December 2, 2013 9:23 am | News | Comments

When sunlight strikes a photosynthesizing organism, energy flashes between proteins just beneath its surface until it is trapped as separated electric charges. Improbable as it may seem, these tiny hits of energy eventually power the growth and movement of all plants and animals. They are literally the sparks of life.

SunPartner Technologies, 3M to deliver wireless transparent solar charging system

November 22, 2013 3:56 pm | News | Comments

SunPartner Technologies and 3M Company have announced an agreement to collaborate in product development and technical solutions based on engineered electronics materials from 3M and transparent solar cell technologies from Sunpartner Technologies. The two companies are developing a sustainable wireless transparent micro component that will charge devices while they are being used and exposed to light.

Copper promises cheaper, sturdier fuel cells

November 22, 2013 11:01 am | News | Comments

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. Chemists have commonly tried to use indium tin oxide (ITO) because it has transparency, but it also expensive and rare. Researchers at Duke Univ. has created something they hope can replace ITO: copper nanowires fused in a see-through film.

Researchers in Germany build bio-based solar cell

November 21, 2013 12:46 pm | News | Comments

In leaves, two proteins are responsible for photosynthesis, and they perform the conversion of carbon dioxide into oxygen and biomass very efficiently. Scientists have now harnessed this capability by embedding these proteins into complex molecules developed in the laboratory. Their bio-based solar cell creates electron current instead of biomass.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading