Advertisement
Solar Energy
Subscribe to Solar Energy

The Lead

Electric-car drivers trading gas for solar power

October 28, 2014 5:33 pm | by Dee-Ann Durbin, AP Auto Writer | News | Comments

Owners of electric vehicles have already gone gas-free. Now, a growing number are powering their cars with sunlight. Solar panels installed on the roof of a home or garage can easily generate enough electricity to power an electric or plug-in gas-electric hybrid vehicle. The approach is not cheap, but advocates say the investment pays off over time and is worth it for the thrill of fossil fuel-free driving.

Researchers use real-world data to model the effect of more solar on the grid

October 13, 2014 8:41 am | by Louise Lerner, Argonne National Laboratory | News | Comments

American electrical utilities do a pretty fantastic job of getting us electricity when we need...

Charge transport jamming in solar cells

October 7, 2014 2:08 pm | News | Comments

...

View Sample

FREE Email Newsletter

Research shows how giant clams harness the sun

October 3, 2014 9:39 am | News | Comments

Beneath the waves, many creatures sport iridescent structures that rival what scientists can make in the laboratory. A research team has now shown how giant clams use these structures to thrive, operating as exceedingly efficient, living greenhouses that grow symbiotic algae as a source of food. This understanding could have implications for alternative energy research, paving the way for new solar panels or improved ways to grow biofuel.

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

How to make a “perfect” solar absorber

September 29, 2014 8:08 am | by David L. Chandler, MIT News Office | News | Comments

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material’s spectrum of absorption just right: It should absorb virtually all wavelengths of light that reach Earth’s surface from the sun—but not much of the rest of the spectrum, since that would increase the energy that is reradiated by the material, and thus lost to the conversion process.

Advertisement

Report quantifies financial impacts of customer-sited photovoltaics on electric utilities

September 25, 2014 8:39 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

A new report prepared by analysts from Lawrence Berkeley National Laboratory examines the potential impacts of customer-sited solar photovoltaics on electric utility profitability and rates. The report shows that these impacts can vary greatly depending upon the specific circumstances of the utility and may be reduced through a variety of regulatory and ratemaking measures.

Team improves solar cell efficiency with new polymer

September 19, 2014 4:49 pm | by Emily Conover, Univ. of Chicago | News | Comments

A collaboration between scientists in the Univ. of Chicago’s chemistry department, the Institute for Molecular Engineering and Argonne National Laboratory has produced the highest-ever recorded efficiency for solar cells made of two types of polymers and fulllerene. Researchers identified a new polymer that improved the efficiency of solar cells and also determined the method by which the polymer improved the cells’ efficiency.

Breaking “electrode barrier” creates a better low-cost organic solar cell

September 19, 2014 9:02 am | News | Comments

For decades, the power conversion efficiency of organic solar cells was hampered by the drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the Univ. of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the “electrode barrier.”

Engineer to build “hot” solar cells

September 19, 2014 8:12 am | by Rase McCry, Yale Univ. | News | Comments

Yale Univ. associate professor of electrical engineering Minjoo Larry Lee has been awarded $2,540,000 to develop dual-junction solar cells that can operate efficiently at extreme temperatures above 750 F. In addition to converting a portion of the sunlight directly into electricity, the solar cells will use the remainder of the light to heat high-temperature fluids that can drive a steam turbine or be stored for later use.

Studies find declines in price of rooftop and utility-scale solar

September 18, 2014 7:51 am | by Allen Chen, Lawrence Berkeley National Laboratory | News | Comments

The price of solar energy in the U.S. continues to fall substantially, according to the latest editions of two annual reports produced by Lawrence Berkeley National Laboratory (Berkeley Lab). A third Berkeley Lab report, written in collaboration with researchers at Yale Univ., the Univ. of Texas at Austin and the DOE, shows that local permitting and other regulatory procedures can significantly impact residential photovoltaic prices.

Advertisement

Scientists shed light on organic photovoltaic characteristics

September 3, 2014 4:05 pm | News | Comments

The most familiar photovoltaic (PV) designs use rigid layers of silicon crystal, but recently inexpensive organic semiconductor materials have also been used successfully. At this time, organic PV devices are hindered by low efficiency, in part because quantifying their electrical properties is a challenge. Researchers have now developed a method that allows the prediction of the current density-voltage curve of a photovoltaic device.

Breakthrough for carbon nanotube solar cells

September 3, 2014 11:47 am | by Amanda Morris, Northwestern Univ. | News | Comments

Lighter, more flexible and cheaper than conventional solar-cell materials, carbon nanotubes (CNTs) have long shown promise for photovoltaics. But research stalled when CNTs proved to be inefficient, converting far less sunlight into power than other methods. Now a research team has created a new type of CNT solar cell that is twice as efficient as its predecessors.  

Solar fuels as generated by nature

August 25, 2014 7:39 am | News | Comments

A research team investigating an important cofactor in photosynthesis, a manganese-calcium complex which uses solar energy to split water into molecular oxygen, have determined the exact structure of this complex at a crucial stage in the chemical reaction. The new insights into how molecular oxygen is formed at this metal complex may provide a blueprint for synthetic systems that could store sunlight energy in chemical energy carriers.

Solar energy that doesn’t block the view

August 20, 2014 8:05 am | by Tom Oswald, Media Communications, Michigan State Univ. | News | Comments

A team of researchers at Michigan State Univ. has developed a new type of solar concentrator that when placed over a window creates solar energy while allowing people to actually see through the window. It is called a transparent luminescent solar concentrator and can be used on buildings, cell phones and any other device that has a clear surface.

Recycling old batteries into solar cells

August 18, 2014 7:38 am | by David L. Chandler, MIT News Office | News | Comments

This could be a classic win-win solution: A system proposed by researchers at Massachusetts Institute of Technology recycles materials from discarded car batteries—a potential source of lead pollution—into new, long-lasting solar panels that provide emissions-free power. The system is based on a recent development in solar cells that makes use of a compound called perovskite.

Advertisement

Study shows how to power California with wind, water and sun

July 25, 2014 6:49 am | by Rob Jordan, Stanford Univ. | News | Comments

New Stanford Univ. research outlines the path to a possible future for California in which renewable energy creates a healthier environment, generates jobs and stabilizes energy prices. Among other metrics, the plan calculates the number of new devices and jobs created, land and ocean areas required, and policies needed for infrastructure changes.

Steam from the sun

July 21, 2014 7:55 am | by Jennifer Chu, MIT News Office | News | Comments

A new material structure developed at Massachusetts Institute of Technology generates steam by soaking up the sun. The structure—a layer of graphite flakes and an underlying carbon foam—is a porous, insulating material structure that floats on water. When sunlight hits the structure’s surface, it creates a hotspot in the graphite, drawing water up through the material’s pores, where it evaporates as steam.

First ab initio method for characterizing hot carriers

July 18, 2014 8:19 am | by Lynn Yarris, Lawrence Berkeley National Laboratory | News | Comments

One of the major road blocks to the design and development of new, more efficient solar cells may have been cleared. Researchers with the Lawrence Berkeley National Laboratory have developed the first ab initio method for characterizing the properties of “hot carriers” in semiconductors. Hot carriers are electrical charge carriers with significantly higher energy than charge carriers at thermal equilibrium.

Inventor pushes solar panels for roads, highways

July 11, 2014 11:33 am | by Nicholas K. Geranios, Associated Press | News | Comments

The solar panels that Idaho inventor Scott Brusaw has built aren't meant for rooftops. They are meant for roads, driveways, parking lots, bike trails and, eventually, highways. Brusaw, an electrical engineer, says the hexagon-shaped panels can withstand the wear and tear that comes from inclement weather and vehicles, big and small, to generate electricity.

Solar panels light the way from carbon dioxide to fuel

July 2, 2014 9:40 am | by Tien Nguyen, Princeton Univ. | News | Comments

Researchers at Princeton Univ. joined with experts at Liquid Light Inc. to devise an efficient method for harnessing sunlight to convert carbon dioxide into a potential alternative fuel known as formic acid. This type of acid is already being explored as an alternative in fuel cells. The new process takes place inside an electrochemical cell, which consists of metal plates the size of lunch-boxes that enclose liquid-carrying channels.

NIST test house exceeds goal; ends year with energy to spare

July 2, 2014 9:34 am | News | Comments

Despite five months of below-average temperatures and twice the normal amount of snowfall, NIST's Net-Zero Energy Residential Test Facility (NZERTF) in Washington, D.C. ended its one-year test run with 491 KW-h of extra energy. Instead of paying almost $4,400 for electricity, the experimental all-electric house actually earned a credit by exporting surplus energy to the local utility.

Scientists discover how plastic solar panels work

July 1, 2014 11:52 am | News | Comments

Experts don't fully understand how “plastic” solar panels work, which complicates the improvement of their cost efficiency and hinders wider use of the technology. However, an international team has now determined how light beams excite the chemicals in solar panels, enabling them to produce charge. Their findings were made possible with the use of femtosecond Raman spectroscopy.

Study shows greater potential for solar power

June 23, 2014 9:43 am | News | Comments

Concentrating solar power (CSP) could supply a large fraction of the power supply in a decarbonized energy system, according to a new study of the technology and its potential practical application. For this research, scientists simulated the construction and operation of CSP systems in four regions around the world, taking into account weather variations, plant locations, electricity demand, and costs.

One step to solar cell efficiency

June 19, 2014 12:42 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have created a one-step process for producing highly efficient materials that let the maximum amount of sunlight reach a solar cell. The Rice laboratory of chemist Andrew Barron found a simple way to etch nanoscale spikes into silicon that allows more than 99% of sunlight to reach the cells’ active elements, where it can be turned into electricity.

Nanoengineering boosts carrier multiplication in quantum dots

June 19, 2014 8:51 am | by Nancy Ambrosiano, Los Alamos National Laboratory | News | Comments

Los Alamos National Laboratory researchers have demonstrated an almost four-fold boost of the carrier multiplication yield with nanoengineered quantum dots. Carrier multiplication is when a single photon can excite multiple electrons. Quantum dots are novel nanostructures that can become the basis of the next generation of solar cells, capable of squeezing additional electricity out of the extra energy of blue and ultraviolet photons.

Collecting light with artificial moth eyes

June 18, 2014 4:00 pm | News | Comments

Researchers the world over are investigating solar cells which imitate plant photosynthesis, with the goal of using sunlight and water to create synthetic fuels such as hydrogen. Scientists in Switzerland have developed this type of photoelectrochemical cell, but this one recreates a moth’s eye to drastically increase its light collecting efficiency. The cell is made of cheap raw materials: iron and tungsten oxide.

New nanoparticles bring cheaper, lighter solar cells outdoors

June 9, 2014 11:37 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | News | Comments

Think those flat, glassy solar panels on your neighbor’s roof are the pinnacle of solar technology? Think again. Researchers at Univ. of Toronto have designed and tested a new class of solar-sensitive nanoparticle that outshines the current state of the art employing this new class of technology.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading