Advertisement
Solar Energy
Subscribe to Solar Energy

The Lead

Local market conditions, policies strongly influence solar PV pricing

December 15, 2014 2:03 pm | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

Differences in local market conditions and policies, and other factors, particularly the size of the system, can lead to wide disparities in what consumers across the U.S. pay to install solar energy systems on their homes or small businesses, according to a recent study published by Lawrence Berkeley National Laboratory. This translates into thousands of dollars difference in the price of comparable solar energy systems around the U.S.

Researchers set world record in solar energy efficiency

December 8, 2014 8:27 am | by Univ. of New South Wales | News | Comments

Univ. of New South Wales' solar researchers have converted over 40% of the sunlight hitting a...

Technique offers spray-on solar power

December 8, 2014 8:18 am | by Marit Mitchell, Senior Communications Office, Univ. of Toronto | Videos | Comments

Pretty soon, powering your tablet could be as simple as wrapping it in cling wrap. A Univ. of...

Detecting defects in solar cells

December 2, 2014 11:06 am | by National Physical Laboratory | News | Comments

Scientists at the National Physical Laboratory have developed a new method for detecting defects...

View Sample

FREE Email Newsletter

High-tech mirror to beam heat away from buildings into space

December 1, 2014 10:24 am | by Chris Cesare, Stanford Univ. | News | Comments

Stanford Univ. engineers have invented a revolutionary coating material that can help cool buildings, even on sunny days, by radiating heat away from the buildings and sending it directly into space. The heart of the invention is an ultra-thin, multi-layered material that deals with light, both invisible and visible, in a new way.

New technique could harvest more of the sun’s energy

December 1, 2014 8:32 am | by Jessica Stoller-Conrad, Caltech | News | Comments

As solar panels become less expensive and capable of generating more power, solar energy is becoming a more commercially viable alternative source of electricity. However, the photovoltaic cells now used to turn sunlight into electricity can only absorb and use a small fraction of that light, and that means a significant amount of solar energy goes untapped. A new technology epresents a first step toward harnessing that lost energy.

Blu-ray disc can be used to improve solar cell performance

November 25, 2014 8:23 pm | by Northwestern Univ. | News | Comments

Who knew Blu-ray discs were so useful? Already one of the best ways to store high-definition movies and television shows because of their high-density data storage, Blu-ray discs also improve the performance of solar cells, according to new research from Northwestern Univ.

Advertisement

Fool’s gold as a solar material?

November 19, 2014 7:47 am | by David Tennebaum, Univ. of Wisconsin-Madison | News | Comments

As the installation of photovoltaic solar cells continues to accelerate, scientists are looking for inexpensive materials beyond the traditional silicon that can efficiently convert sunlight into electricity. Theoretically, iron pyrite could do the job, but when it works at all, the conversion efficiency remains frustratingly low. Now, a Univ. of Wisconsin-Madison research team explains why that is.

Graphene/nanotube hybrid benefits flexible solar cells

November 17, 2014 3:37 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have invented a novel cathode that may make cheap, flexible dye-sensitized solar cells practical. The Rice laboratory of materials scientist Jun Lou created the new cathode, one of the two electrodes in batteries, from nanotubes that are seamlessly bonded to graphene and replaces the expensive and brittle platinum-based materials often used in earlier versions.

Huge solar plant lags in early production

November 17, 2014 3:01 pm | by Michael R. Blood - Associated Press - Associated Press | News | Comments

The largest solar power plant of its type in the world isn't producing as much energy as planned. One of the reasons is as basic as it gets: The sun isn't shining as much as expected. The Ivanpah Solar Electric Generating System opened in February, with operators saying it would produce enough electricity to power a city of 140,000 people.

Solar-friendly form of silicon shines

November 17, 2014 11:16 am | by Carnegie Institute | News | Comments

Silicon is the second-most-abundant element in the Earth's crust. When purified, it takes on a diamond structure, which is essential to modern electronic devices—carbon is to biology as silicon is to technology. A team of Carnegie scientists has synthesized an entirely new form of silicon, one that promises even greater future applications.

2015 R&D 100 Awards entries now open

November 13, 2014 11:27 am | by Lindsay Hock, Managing Editor | News | Comments

The editors of R&D Magazine have announced the opening of the 2015 R&D 100 Awards entry process. The R&D 100 Awards have a 50 plus year history of awarding the 100 most technologically significant products of the year. Past winners have included sophisticated testing equipment, innovative new materials, chemistry breakthroughs, biomedical products, consumer items, high-energy physics and more.

Advertisement

Biochemistry detective work: Algae at night

November 10, 2014 11:05 am | by Carnegie Institute | News | Comments

Photosynthesis is probably the most well-known aspect of plant biochemistry. It enables plants, algae and select bacteria to transform the energy from sunlight during the daytime into chemical energy in the form of sugars and starches (as well as oils and proteins), and it involves taking in carbon dioxide from the air and releasing oxygen derived from water molecules.

New materials yield record efficiency polymer solar cells

November 10, 2014 10:20 am | by Tracey Peake, North Carolina State Univ. | News | Comments

Researchers from North Carolina State Univ. and Hong Kong Univ. of Science and Technology have found that temperature-controlled aggregation in a family of new semiconducting polymers is the key to creating highly efficient organic solar cells that can be mass produced more cheaply. Their findings also open the door to experimentation with different chemical mixtures that comprise the active layers of the cells.

Petrochemical industry technique helps store solar energy

November 6, 2014 2:46 pm | by Dan Stober, Stanford Univ. | News | Comments

Chemical engineers have designed a catalyst that could help produce vast quantities of pure hydrogen through electrolysis – the process of passing electricity through water to break hydrogen loose from oxygen in H2O.         

Leading the charge for a panel-powered car

November 6, 2014 10:08 am | by Queensland Univ. of Technology | News | Comments

A car powered by its own body panels could soon be driving on our roads after a breakthrough in nanotechnology research by a Queensland Univ. of Technology team.                          

Combining “Tinkertoy” materials with solar cells for increased photovoltaic efficiency

November 5, 2014 8:42 am | by Mike Janes, Sandia National Laboratories | News | Comments

Researchers at Sandia National Laboratories have received a $1.2 million award from the U.S. Dept. of Energy’s SunShot Initiative to develop a technique that they believe will significantly improve the efficiencies of photovoltaic materials and help make solar electricity cost-competitive with other sources of energy.

Advertisement

Microgrid could standardize small, self-sustaining electric grids

November 4, 2014 2:56 pm | by Katie Elyce Jones, Oak Ridge National Laboratory | News | Comments

When Oak Ridge National Laboratory researcher Yan Xu talks about “islanding,” or isolating, from the grid, she’s discussing a fundamental benefit of microgrids—small systems powered by renewables and energy storage devices. The benefit is that microgrids can disconnect from larger utility grids and continue to provide power locally.

Electric-car drivers trading gas for solar power

October 28, 2014 5:33 pm | by Dee-Ann Durbin, AP Auto Writer | News | Comments

Owners of electric vehicles have already gone gas-free. Now, a growing number are powering their cars with sunlight. Solar panels installed on the roof of a home or garage can easily generate enough electricity to power an electric or plug-in gas-electric hybrid vehicle. The approach is not cheap, but advocates say the investment pays off over time and is worth it for the thrill of fossil fuel-free driving.

Researchers use real-world data to model the effect of more solar on the grid

October 13, 2014 8:41 am | by Louise Lerner, Argonne National Laboratory | News | Comments

American electrical utilities do a pretty fantastic job of getting us electricity when we need it. In 2006, the power was out on average for just 0.03% of the year in the U.S. But right now, this system depends on getting most of its power from coal, nuclear and gas plants: big, dependable power plants that can be turned on and off when needed.

Hybrid materials could smash the solar efficiency ceiling

October 9, 2014 8:57 am | News | Comments

Researchers have developed a new method for harvesting the energy carried by particles known as “dark” spin-triplet excitons with close to 100% efficiency, clearing the way for hybrid solar cells which could far surpass current efficiency limits. To date, this type of energy transfer had only been shown for “bright” spin-singlet excitons.

Charge transport jamming in solar cells

October 7, 2014 2:08 pm | News | Comments

Conventional silicon solar cells could have an inexpensive competitor in the near future. Researchers in Europe have examined the working principle of a cell where an organic-inorganic perovskite compound acts as a light absorber. The scientists observed that charge carriers accumulate in a layer in these photovoltaic elements. If this jam can be dissolved, the already considerable efficiency of these solar cells could be further improved.

Research shows how giant clams harness the sun

October 3, 2014 9:39 am | News | Comments

Beneath the waves, many creatures sport iridescent structures that rival what scientists can make in the laboratory. A research team has now shown how giant clams use these structures to thrive, operating as exceedingly efficient, living greenhouses that grow symbiotic algae as a source of food. This understanding could have implications for alternative energy research, paving the way for new solar panels or improved ways to grow biofuel.

Batteries included: A solar cell that stores its own power

October 3, 2014 9:07 am | by Pam Frost Gorder, Ohio State Univ. | News | Comments

The world’s first “solar battery”, invented by researchers at Ohio State Univ., is a battery and a solar cell combined into one hybrid device. Key to the innovation is a mesh solar panel, which allows air to enter the battery, and a special process for transferring electrons between the solar panel and the battery electrode. Inside the device, light and oxygen enable different parts of the chemical reactions that charge the battery.

How to make a “perfect” solar absorber

September 29, 2014 8:08 am | by David L. Chandler, MIT News Office | News | Comments

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material’s spectrum of absorption just right: It should absorb virtually all wavelengths of light that reach Earth’s surface from the sun—but not much of the rest of the spectrum, since that would increase the energy that is reradiated by the material, and thus lost to the conversion process.

Report quantifies financial impacts of customer-sited photovoltaics on electric utilities

September 25, 2014 8:39 am | by Allan Chen, Lawrence Berkeley National Laboratory | News | Comments

A new report prepared by analysts from Lawrence Berkeley National Laboratory examines the potential impacts of customer-sited solar photovoltaics on electric utility profitability and rates. The report shows that these impacts can vary greatly depending upon the specific circumstances of the utility and may be reduced through a variety of regulatory and ratemaking measures.

Team improves solar cell efficiency with new polymer

September 19, 2014 4:49 pm | by Emily Conover, Univ. of Chicago | News | Comments

A collaboration between scientists in the Univ. of Chicago’s chemistry department, the Institute for Molecular Engineering and Argonne National Laboratory has produced the highest-ever recorded efficiency for solar cells made of two types of polymers and fulllerene. Researchers identified a new polymer that improved the efficiency of solar cells and also determined the method by which the polymer improved the cells’ efficiency.

Breaking “electrode barrier” creates a better low-cost organic solar cell

September 19, 2014 9:02 am | News | Comments

For decades, the power conversion efficiency of organic solar cells was hampered by the drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the Univ. of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the “electrode barrier.”

Engineer to build “hot” solar cells

September 19, 2014 8:12 am | by Rase McCry, Yale Univ. | News | Comments

Yale Univ. associate professor of electrical engineering Minjoo Larry Lee has been awarded $2,540,000 to develop dual-junction solar cells that can operate efficiently at extreme temperatures above 750 F. In addition to converting a portion of the sunlight directly into electricity, the solar cells will use the remainder of the light to heat high-temperature fluids that can drive a steam turbine or be stored for later use.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading