Advertisement
Solar Energy
Subscribe to Solar Energy

The Lead

Fine-tuned molecular orientation is key to more efficient solar cells

May 26, 2015 10:19 am | by RIKEN | News | Comments

Polymer solar cells are a hot area of research due to both their strong future potential and the significant challenges they pose. It is believed that thanks to lower production costs, they could become a viable alternative to conventional solar cells with silicon substrates when they achieve a power conversion efficiency of between 10 and 15%.

American energy use up slightly

May 21, 2015 8:00 am | by Anne M. Stark, Lawrence Livermore National Laboratory | News | Comments

Americans' energy use continued to grow slowly in 2014, fueled by increases in the use of...

Efficiency record for black silicon solar cells jumps

May 18, 2015 12:50 pm | by Aalto Univ. | News | Comments

Researchers have obtained the record-breaking efficiency of 22.1% on nanostructured silicon...

New shortcut to solar cells

May 13, 2015 4:38 pm | by Mike Williams, Rice Univ. | News | Comments

Rice Univ. scientists have found a way to simplify the manufacture of solar cells by using the...

View Sample

FREE Email Newsletter

Artificial photosynthesis: New, stable photocathode with potential

May 13, 2015 9:14 am | by Helmholtz-Zentrum Berlin | News | Comments

Many of us are familiar with electrolytic splitting of water from their school days: If you hold two electrodes into an aqueous electrolyte and apply a sufficient voltage, gas bubbles of hydrogen and oxygen are formed. If this voltage is generated by sunlight in a solar cell, then you could store solar energy by generating hydrogen gas. This is because hydrogen is a versatile medium of storing and using "chemical energy".

Inkjet printing process for kesterite solar cells

May 6, 2015 11:33 am | by Antonia Rotger, Helmholtz-Zentrum Berlin | News | Comments

The drop-on-demand inkjet printing is a promising approach allowing patterning of materials with negligible materials waste; hence, significant reduction of raw materials cost can be achieved. Furthermore, inkjet printing can be easily adapted to a roll-to-roll process, which is suitable for large scale production.

Capturing sunlight for a rainy day

May 6, 2015 8:27 am | by Jes Andersen, Univ. of Copenhagen | News | Comments

The sun is a huge source of energy. In just one hour, Earth is hit by so much sunshine that humankind could cover its energy needs for an entire year, if only we knew how to harvest and save it. But storing sunshine is not trivial. Now a student at the Dept. of Chemistry at the Univ. of Copenhagen has made a breakthrough that may prove pivotal for technologies to capture the energy of the sun and save it for a rainy day.

Advertisement

Engineering a better solar cell

May 1, 2015 7:57 am | by Renee Gastineau, Univ. of Washington | News | Comments

One of the fastest-growing areas of solar energy research is with materials called perovskites. These promising light harvesters could revolutionize the solar and electronics industries because they show potential to convert sunlight into electricity more efficiently and less expensively than today’s silicon-based semiconductors.

Artificial photosynthesis could help make fuels, plastics and medicine

April 30, 2015 8:15 am | by American Chemical Society | News | Comments

The global industrial sector accounts for more than half of the total energy used every year. Now scientists are inventing a new artificial photosynthetic system that could one day reduce industry’s dependence on fossil fuel-derived energy by powering part of the sector with solar energy and bacteria.

Converter Accepts Different Power Sources

April 28, 2015 7:00 am | by Univ. of Arkansas | News | Comments

Engineering researchers have invented a novel electrical power converter system that simultaneously accepts power from a variety of energy sources and converts it for use in the electrical grid system. Innovations in this field are critical as the U.S. moves toward integration of renewable energy sources to the national power grid.

Using the photoactive zinc oxide material, scientists studied the formation and migration of so-called polarons. Courtesy of Patrick Rinke/Aalto University

Pseudoparticles travel through photoactive material

April 23, 2015 10:59 am | by Karlsruhe Institute of Technology | News | Comments

Researchers ohave unveiled an important step in the conversion of light into storable energy: They studied the formation of so-called polarons in zinc oxide. The pseudoparticles travel through the photoactive material until they are converted into electrical or chemical energy at an interface.

Analysis sees many promising pathways for solar photovoltaic power

March 26, 2015 12:07 pm | by David L. Chandler, MIT News Office | News | Comments

In a broad new assessment of the status and prospects of solar photovoltaic technology, Massachusetts Institute of Technology researchers say that it is “one of the few renewable, low-carbon resources with both the scalability and the technological maturity to meet ever-growing global demand for electricity.”

Advertisement

Manufacturing process could yield better solar cells, faster chips

March 25, 2015 10:57 am | by Tom Abate, Stanford Engineering | Videos | Comments

Computer chips, solar cells and other electronic devices have traditionally been based on silicon, the most famous of the semiconductors, that special class of materials whose unique electronic properties can be manipulated to turn electricity on and off the way faucets control the flow of water. There are other semiconductors. Gallium arsenide is one such material and it has certain technical advantages over silicon.

New kind of “tandem” solar cell developed

March 25, 2015 7:41 am | by David L. Chandler, MIT News Office | News | Comments

Researchers at Massachusetts Institute of Technology and Stanford Univ. have developed a new kind of solar cell that combines two different layers of sunlight-absorbing material in order to harvest a broader range of the sun’s energy. The development could lead to photovoltaic cells that are more efficient than those currently used in solar-power installations, the researchers say.

A better method for making perovskite solar cells

March 16, 2015 2:33 pm | by Kevin Stacey, Brown Univ. | News | Comments

Research led by a Brown Univ. graduate student has revealed a new way to make light-absorbing perovskite films for use in solar cells. The new method involves a room-temperature solvent bath to create perovskite crystals, rather than the blast of heat used in current crystallization methods.

Thin film clears path to solar fuels

March 11, 2015 9:39 am | by Ker Than, Caltech | News | Comments

Caltech scientists, inspired by a chemical process found in leaves, have developed an electrically conductive film that could help pave the way for devices capable of harnessing sunlight to split water into hydrogen fuel. When applied to semiconducting materials such as silicon, the nickel oxide film prevents rust buildup and facilitates an important chemical process in the solar-driven production of fuels such as methane or hydrogen.

Just Released A Product At Pittcon? Enter It Into the R&D 100 Awards

March 11, 2015 8:42 am | by Lindsay Hock, Editor | News | Comments

The editors of R&D Magazine have announced an eligibility extension for products to be entered into the 2015 R&D 100 Awards. The 2015 R&D 100 Awards will honor products, technologies and services that have been introduced to the market between January 1, 2014 and March 31, 2015.

Advertisement

New approach combines biomass conversion, solar energy conversion

March 11, 2015 8:21 am | by Libby Dowdall, Univ. of Wisconsin-Madison | News | Comments

In a study published in Nature Chemistry, Univ. of Wisconsin-Madison chemistry Prof. Kyoung-Shin Choi presents a new approach to combine solar energy conversion and biomass conversion, two important research areas for renewable energy. For decades, scientists have been working to harness the energy from sunlight to drive chemical reactions to form fuels such as hydrogen, which provide a way to store solar energy for future use.

Detection of gamma rays from a newly discovered dwarf galaxy may point to dark matter

March 10, 2015 1:36 pm | by Kevin Stacey, Brown Univ. | News | Comments

Scientists have detected for the first time gamma rays emanating from a dwarf galaxy. Such a detection may be the signal of dark matter particles annihilating, a long-sought prediction of many dark matter theories.        

Research Key to Artificial Photosynthesis, 'Solar Fuels'

March 10, 2015 7:00 am | by Caltech | News | Comments

Scientists, inspired by a chemical process found in leaves, have developed an electrically conductive film that could help pave the way for devices capable of harnessing sunlight to split water into hydrogen fuel. When applied to semiconducting materials such as silicon, the nickel oxide film prevents rust buildup and facilitates an important chemical process in the solar-driven production of fuels.

Solar Plane Sets Out on Historic World Trip

March 9, 2015 8:36 am | by Associated Press, Aya Batrawy | News | Comments

With its wings stretched wide to catch the sun's energy, a Swiss-made solar-powered aircraft took off from Abu Dhabi just after daybreak today in a historic first attempt to fly around the world without a drop of fossil fuel.

Green Wall, Translucent Solar Panels Team Up

March 9, 2015 8:00 am | by Univ. of Cambridge | News | Comments

Green wall technology and semi-transparent solar panels have been combined to generate electrical current from a renewable source of energy both day and night. A prototype “green bus shelter” that could eventually generate enough electricity to light itself, has been built by a collaboration of university researchers and eco-companies.

How to best harness solar power

March 2, 2015 10:48 am | by Dawn Fuller, Univ. of Cincinnati | News | Comments

A research partnership is reporting advances on how to make solar cells stronger, lighter, more flexible and less expensive when compared with the current silicon or germanium technology on the market. The researchers discovered how a blend of conjugated polymers resulted in structural and electronic changes that increased efficiency three-fold, by incorporating graphene in the active layer of the carbon-based materials.

Supersonic electrons could produce future solar fuel

March 2, 2015 10:38 am | by Lund Univ. | News | Comments

Researchers from institutions including Lund Univ. have taken a step closer to producing solar fuel using artificial photosynthesis. In a new study, they have successfully tracked the electrons' rapid transit through a light-converting molecule. The ultimate aim of the present study is to find a way to make fuel from water using sunlight.

Using “fuzzy logic” to optimize hybrid solar/battery systems

February 26, 2015 11:11 am | by American Institute of Physics | News | Comments

How did fuzzy logic help a group of researchers in Tunisia and Algeria create an ideal photovoltaic system that obeys the supply-and-demand principle and its delicate balance? In the Journal of Renewable & Sustainable Energy, the group describes a new sizing system of a solar array and a battery in a standalone photovoltaic system that is based on fuzzy logic.

Enabling solar cells to use more sunlight

February 25, 2015 9:21 am | by Britta Schlüter, Univ. of Luxembourg | News | Comments

Scientists of the Univ. of Luxembourg and of the Japanese electronics company TDK report progress in photovoltaic research: They have improved a component that will enable solar cells to use more energy of the sun and thus create a higher current. The improvement concerns a conductive oxide film which now has more transparency in the infrared region.

Researchers identify keys to improved polymer solar cells

February 23, 2015 8:38 am | by Bill Kisliuk, Univ. of California, Los Angeles | News | Comments

Paving the way for lighter and more flexible solar devices, Univ. of California, Los Angeles researchers have identified the key principles for developing high-efficiency polymer solar cells. Today’s commercially produced solar panels use silicon cells to efficiently convert sunlight to energy. But silicon panels are too heavy to be used for energy-producing coatings for buildings and cars, or flexible and portable power supplies.

Cheap solar cells made from shrimp shells

February 19, 2015 8:48 am | by Queen Mary, Univ. of London | News | Comments

Researchers have successfully created electricity-generating solar-cells with chemicals found the shells of shrimps and other crustaceans for the first time.

Limitless Photovoltaic Future

February 13, 2015 12:27 pm | by Tim Studt, Editor-in-Chief | Articles | Comments

Researchers working with photovoltaic (PV) technologies and production processes have made great strides over the past several years, such that PV systems are now considered a viable and cost-competitive energy alternative to traditional fossil fuel energy sources. The number of installations continues to increase, while panel and system costs continue to decline.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading