Advertisement
Hydrogen Energy
Subscribe to Hydrogen Energy
View Sample

FREE Email Newsletter

New method for producing clean hydrogen

May 21, 2013 2:43 pm | News | Comments

Duke University engineers have developed a novel method for producing clean hydrogen, which could prove essential to weaning society off of fossil fuels and their environmental implications. The Duke engineers, using a new catalytic approach, have shown in the laboratory that they can reduce carbon monoxide levels to nearly zero in the presence of hydrogen and the harmless byproducts of carbon dioxide and water.

Performance improvement in solar-powered hydrogen generation

May 15, 2013 9:43 am | News | Comments

Using a powerful combination of microanalytic techniques that simultaneously image photoelectric current and chemical reaction rates across a surface on a micrometer scale, researchers at NIST have shed new light on what may become a cost-effective way to generate hydrogen gas directly from water and sunlight.

New technology propels 'old energy' boom

May 4, 2013 11:52 am | by JONATHAN FAHEY - AP Energy Writer - Associated Press | News | Comments

Technology created an energy revolution over the past decade—just not the one we expected. By now, cars were supposed to be running on fuel made from plant waste or algae—or powered by hydrogen. Electricity would be generated with solar panels and wind turbines. Fossil fuels? They were going to be expensive and scarce. But in the race to conquer energy technology, Old Energy is winning.

Advertisement

Recipe for low-cost, biomass-derived catalyst for hydrogen production

April 24, 2013 8:06 am | News | Comments

In recently published online paper, researchers at Brookhaven National Laboratory describe details of a low-cost, stable, effective catalyst that could replace costly platinum in the production of hydrogen. The catalyst, made from renewable soybeans and abundant molybdenum metal, produces hydrogen in an environmentally friendly, cost-effective manner, potentially increasing the use of this clean energy source.

Breakthrough in hydrogen fuel production

April 5, 2013 10:20 am | News | Comments

A team of Virginia Tech researchers has discovered a way to extract large quantities of hydrogen from any plant, a breakthrough that has the potential to bring a low-cost, environmentally friendly fuel source to the world.

Ash from refuse could become hydrogen gas

March 26, 2013 12:31 pm | News | Comments

Every year, millions of tons of environmentally harmful ash is produced worldwide, and is mostly dumped in landfill sites or, in some countries, used as construction material. The ash is what is left when rubbish has been burnt in thermal power stations. A researcher from Lund University in Sweden has now developed a technique to use the ash to produce useful hydrogen gas.

First synthetic catalyst to use iron to split hydrogen gas

February 18, 2013 9:09 am | by Mary Beckman, PNNL | News | Comments

To make fuel cells more economical, engineers want a fast and efficient iron-based molecule that splits hydrogen gas to make electricity. Researchers at Pacific Northwest National Laboratory have recently reported the development of such a catalyst. Made from a synthetic molecule, it is the first iron-based catalyst that converts hydrogen directly to electricity, and it might help make those fuel cells less expensive.

How scientists are using silicon to produce hydrogen on demand

January 23, 2013 8:04 am | by Charlotte Hsu, University at Buffalo | News | Comments

Super-small particles of silicon react with water to produce hydrogen almost instantaneously, according to University at Buffalo researchers. In a series of experiments, the scientists created spherical silicon particles about 10 nm in diameter. When combined with water, these particles reacted to form silicic acid and hydrogen—a potential source of energy for fuel cells.

Advertisement

Nanotechnology simplifies hydrogen production for clean energy

November 27, 2012 8:34 am | News | Comments

In the first-ever experiment of its kind, researchers have demonstrated that clean energy hydrogen can be produced from water splitting by using very small metal particles that are exposed to sunlight. Researchers from Stony Brook University and Brookhaven National Laboratory found that the use of gold particles smaller than 1 nm resulted in greater hydrogen production than other co-catalysts tested.

Study reveals clues to cause of hydrogen embrittlement

November 19, 2012 1:39 pm | News | Comments

Since the phenomenon was discovered in 1875, hydrogen embrittlement has been a persistent problem for the design of structural materials. Despite decades of research, experts have yet to fully understand the physics underlying the problem and must still resort to a trial-and-error approach. Now, a team of researchers have shown that the answer may be rooted in how hydrogen modifies material behaviors at the nanoscale.

Rust and water are used to store solar energy as hydrogen

November 13, 2012 9:44 am | News | Comments

Photoelectrochemical (PEC) tandem solar cells offer a way to produce hydrogen directly from water. But efforts to produce an efficient cell have only resulted in extremely expensive prototypes. Researchers in Switzerland have recently developed a PEC, however, that is made from inexpensive materials and achieves up to 16% efficiency.

Nanocrystals, nickel catalyst improve light-based hydrogen production

November 8, 2012 3:33 pm | News | Comments

Hydrogen is an attractive fuel source because it can easily be converted into electric energy and gives off no greenhouse emissions. A group of chemists at the University of Rochester is adding to its appeal by increasing the output and lowering the cost of current light-driven hydrogen-production systems.

The hunt for electron holes: A molecular glance on solar water splitting

October 30, 2012 1:18 pm | News | Comments

Hydrogen production by solar water splitting in photoelectrochemical cells (PEC) has long been considered the holy grail of sustainable energy research. Iron oxide is a promising electrode material, and now an international team of researchers gained in-depth insights into the electronic structure of an iron oxide electrode, while it was in operation. This opens up new possibilities for an affordable hydrogen production from solar energy.

Advertisement

New paper reveals fundamental chemistry of plasma-liquid interactions

October 17, 2012 11:56 am | News | Comments

Though not often considered beyond the plasma television, developers have begun to capitalize on how these small-scale microplasmas interact with liquids to kill bacteria or synthesize nanoparticles. An interdisciplinary collaboration has revealed a critical interaction that is occurring at this plasma-liquid interface in that the electrons in plasma actually serve to separate water, producing hydrogen gas.

Nanostructures to realize hydrogen's energy potential

August 15, 2012 6:40 am | News | Comments

For the first time, engineers at the University of New South Wales have demonstrated that hydrogen can be released and reabsorbed from a promising storage material, overcoming a major hurdle to its use as an alternative fuel source. The researchers have synthesized nanoparticles of a commonly overlooked chemical compound called sodium borohydride and encased these inside nickel shells.

An intriguing twist in the structure of a cobalt oxide catalyst

August 15, 2012 5:41 am | by David Lindley | News | Comments

Hydrogen is a clean fuel, producing only water vapor when it burns. But generating hydrogen in large quantities and in a "green" fashion is not straightforward. Biological photosynthesis includes an efficient reaction step that splits water into hydrogen and oxygen with the help of catalysts that have been used as models for synthetic catalysts. Working at the Advanced Photon Source at Argonne National Laboratory, a team of scientists has determined the structure of one such catalyst, a complex cobalt oxide.

Calculations reveal fine line for hydrogen release from storage materials

July 17, 2012 7:08 am | News | Comments

Scientists who have recently calculated microscopic reaction mechanisms in the promising energy storage material aluminum hydride are challenging outdated reaction curve interpretations. Their findings show how the creation of vacancies in hydrogen enables the release rate of the gas to be fast, but not too fast.

NASA partners with Cella Energy on hydrogen technology

July 10, 2012 1:45 pm | News | Comments

NASA's Kennedy Space Center in Florida has announced a new partnership with Cella Energy Inc. that could result in vehicles being powered by hydrogen. The company has formulated a way to store hydrogen safely in tiny pellets that still allow the fuel to be burned in an engine. Because of its rocket work, Kennedy has the infrastructure and experience necessary to handle hydrogen safely.

Ionic liquid improves speed, efficiency of hydrogen-producing catalyst

June 18, 2012 3:49 am | News | Comments

The design of a nature-inspired material that can make energy-storing hydrogen gas has gone holistic. Usually, tweaking the design of this particular catalyst—a work in progress for cheaper, better fuel cells—results in either faster or more energy-efficient production but not both. Now, researchers have found a condition that creates hydrogen faster without a loss in efficiency.

Potential carbon capture role for new carbon dioxide-absorbing material

June 12, 2012 4:03 am | News | Comments

A novel porous material that has unique carbon dioxide retention properties has been developed through research led by The University of Nottingham. The findings form part of ongoing efforts to develop new materials for gas storage applications could have an impact in the advancement of new carbon capture products for reducing emissions from fossil fuel processes.

NIST hydrogen test facility starts delivering data

May 16, 2012 4:03 am | News | Comments

Researchers at NIST have published their first archival paper based on data from the institute's new hydrogen test facility. The paper examines the embrittling effect of pressurized hydrogen gas on three different types of pipeline steel, an important factor for the design of future hydrogen transportation and delivery systems.

Nanosheet catalyst discovered to sustainably split hydrogen from water

May 9, 2012 6:49 am | News | Comments

Hydrogen gas offers one of the most promising sustainable energy alternatives to limited fossil fuels. But traditional methods of producing pure hydrogen face significant challenges in unlocking its full potential. Now, scientists at Brookhaven National Laboratory have developed a new electrocatalyst that addresses one of these problems by generating hydrogen gas from water cleanly and with much more affordable materials.

Novel solar reactor may enable clean fuel derived from sunlight

April 4, 2012 10:05 am | by Karen B. Roberts, University of Delaware | News | Comments

Producing hydrogen from non-fossil fuel sources is a problem that continues to elude many scientists, but University of Delaware's Erik Koepf thinks he may have discovered a solution. He has designed a novel reactor that employs highly concentrated sunlight and zinc oxide powder to produce solar hydrogen, a truly clean, sustainable fuel with zero emissions.

Researchers use electricity to generate alternative fuel

March 30, 2012 4:21 am | by Wileen Wong Kromhout, University of California, Los Angeles | News | Comments

Imagine being able to use electricity to power your car—even if it's not an electric vehicle. Researchers at the University of California, Los Angeles Henry Samueli School of Engineering and Applied Science have for the first time demonstrated a method for converting carbon dioxide into liquid fuel isobutanol using electricity.

Fuel cell breaks 40,000-hour mark

March 29, 2012 2:01 pm | News | Comments

In a new world record for stationary applications, a planar solid oxide fuel cell built at Jülich Institute of Energy and Climate Research in Germany has exceeded an operating lifetime of 40,000 hours. Powered by hydrogen, the cell functioned for the equivalent of five years at 64% electricity conversion efficiency.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading