Advertisement
Green Innovations
Subscribe to Green Innovations
View Sample

FREE Email Newsletter

World’s first magma-enhanced geothermal system created in Iceland

January 23, 2014 1:54 pm | by Iqbal Pittalwala, Univ. of California, Riverside | News | Comments

In 2009, a borehole drilled at Krafla, northeast Iceland, as part of the Icelandic Deep Drilling Project (IDDP), unexpectedly penetrated into magma at only 2100 m depth, with a temperature of 900-1000 C. The borehole, called IDDP-1, essentially created the world’s first magma-enhanced geothermal system, and is now blowing superheated 450 C steam directly from a molten magma.

Engineer converts yeast cells into “sweet crude” biofuel

January 22, 2014 9:13 am | News | Comments

Researchers at The Univ. of Texas at Austin’s Cockrell School of Engineering have developed a new source of renewable energy, a biofuel, from genetically engineered yeast cells and ordinary table sugar. This yeast produces oils and fats, known as lipids, that can be used in place of petroleum-derived products.

Researcher develops energy-dense sugar battery

January 21, 2014 11:34 am | News | Comments

A Virginia Tech research team has developed a battery that runs on sugar, using a non-natural synthetic enzymatic pathway that strip all charge potentials from the sugar. While other sugar batteries have been developed, this one has an energy density an order of magnitude higher than others, allowing it to run longer before needing to be refueled.

Advertisement

How to tap the sun’s energy through heat as well as light

January 20, 2014 7:43 am | by David L. Chandler, MIT News Office | Videos | Comments

A new approach to harvesting solar energy, developed by Massachusetts Institute of Technology researchers, could improve efficiency by using sunlight to heat a high-temperature material whose infrared radiation would then be collected by a conventional photovoltaic cell. This technique could also make it easier to store the energy for later use, the researchers say.

Project aims to produce liquid transportation fuel from methane

January 16, 2014 8:13 am | News | Comments

How’s this for innovative: A Lawrence Berkeley National Laboratory-led team hopes to engineer a new enzyme that efficiently converts methane to liquid transportation fuel. Methane is the main component of natural gas and biogas from wastewater treatments and landfills. Another source is stranded natural gas, which is currently flared or vented at remote oil fields, and which represents an enormous unused energy resource.

Cobalt catalysts allow researchers to duplicate complicated steps of photosynthesis

January 13, 2014 4:19 pm | News | Comments

Humans have for ages taken cues from nature to build their own devices, but duplicating the steps in the complicated electronic dance of photosynthesis remains one of the biggest challenges and opportunities for chemists. Currently, the most efficient methods we have for making fuel from sunlight and water involve rare and expensive metal catalysts. However, that is about to change.

Inverse opal structure improves thin-film solar cells

January 13, 2014 3:59 pm | by Emil Venere, Purdue Univ. | News | Comments

Researchers have shown how to increase the efficiency of thin-film solar cells, a technology that could bring low-cost solar energy. The approach uses 3-D photonic crystals to absorb more sunlight than conventional thin-film cells. The synthetic crystals possess a structure called an inverse opal to make use of and enhance properties found in the gemstones to reflect, diffract and bend incoming sunlight.

Researchers find simple, cheap way to increase solar cell efficiency

January 6, 2014 7:42 am | News | Comments

Researchers from North Carolina State Univ. and the Chinese Academy of Sciences have found an easy way to modify the molecular structure of a polymer commonly used in solar cells. Their modification can increase solar cell efficiency by more than 30%. Polymer-based solar cells have two domains, consisting of an electron acceptor and an electron donor material.

Advertisement

Chinese biologist seeks out productive biofuel sources

December 27, 2013 12:47 pm | News | Comments

In a recent achievement, Cui Qiu, a researcher with the Chinese Academy of Sciences' Qingdao Institute of Bioenergy and Bioprocess Technology, turned a few shy members of the Clostridium germ family into highly productive workers. Some chewed up wood fiber and churned out sugar, while others ate the sugar and made ethanol. These small creatures could bring huge changes to the world, Cui says.

Burning biomass pellets in China could lower mercury emissions

December 19, 2013 7:32 pm | News | Comments

For millions of homes, plants, wood and other types of “biomass” serve as an essential source of fuel, especially in developing countries, but their mercury content has raised flags among environmentalists and researchers. Scientists are now reporting that among dozens of sources of biomass, processed pellets burned under realistic conditions in China emit relatively low levels of the potentially harmful substance.

Team developing new monitoring tools for hydropower generation

December 19, 2013 8:52 am | News | Comments

A group of researchers at Carnegie Mellon Univ. is banking on the efficiency of an environmentally friendly alternative to large hydroelectric operations. Known as hydrokinetic or run-of-the-river power extraction, the new method harvests a small portion of kinetic energy in the river at multiple locations. They are building multi-scale hierarchical models for analyzing large-scale river networks, hydropower project placement, and control.

Harvesting electricity: Triboelectric generators capture wasted power

December 10, 2013 7:46 am | Videos | Comments

With one stomp of his foot, Zhong Lin Wang illuminates a thousand light-emitting diode (LED) bulbs, with no batteries or power cord. The current comes from essentially the same source as that tiny spark that jumps from a fingertip to a doorknob when you walk across carpet on a cold, dry day. Wang and his research team have learned to harvest this power and put it to work.

Highly insulating windows are very energy efficient, though expensive

December 6, 2013 8:09 am | News | Comments

Highly insulating triple-pane windows keep a house snug and cozy, but it takes two decades or more for the windows to pay off financially based on utility-bill savings, according to a report by energy-efficiency experts at the Pacific Northwest National Laboratory (PNNL). The report is based on a study at PNNL's Lab Homes, a pair of identical manufactured homes used to study energy efficiency.

Advertisement

Copper promises cheaper, sturdier fuel cells

November 22, 2013 11:01 am | News | Comments

Converting solar energy into storable fuel remains one of the greatest challenges of modern chemistry. Chemists have commonly tried to use indium tin oxide (ITO) because it has transparency, but it also expensive and rare. Researchers at Duke Univ. has created something they hope can replace ITO: copper nanowires fused in a see-through film.

Catalyst for business

November 21, 2013 9:37 am | by Rob Matheson, MIT News Office | News | Comments

After working at a software company for four years, Massachusetts Institute of Technology (MIT) alumnus Andrew Dougherty was itching to do something entrepreneurial in the energy industry. Browsing the Website of MIT’s $50K (now $100K) Entrepreneurship Competition, he found an exact match for his interests: an invention by MIT postdoctoral researcher Javier García-Martínez that used nanotechnology to improve the efficiency of oil refining.

Study could lead to paradigm shift in organic solar cell research

November 20, 2013 8:19 am | by Mike Shwartz, Stanford Univ. | News | Comments

Organic solar cells have long been touted as lightweight, low-cost alternatives to rigid solar panels made of silicon. Dramatic improvements in the efficiency of organic photovoltaics have been made in recent years, yet the fundamental question of how these devices convert sunlight into electricity is still hotly debated. Now a Stanford Univ. research team is weighing in on the controversy.

Holistic cell design leads to high-performance lithium-sulfur battery

November 20, 2013 7:54 am | News | Comments

Researchers at Lawrence Berkeley National Laboratory have demonstrated in the laboratory a lithium-sulfur battery that has more than twice the specific energy of lithium-ion batteries, and that lasts for more than 1,500 cycles of charge-discharge with minimal decay of the battery’s capacity. This is the longest cycle life reported so far for any lithium-sulfur battery.

Study uses neutron scattering, supercomputing to demystify biofuel production

November 14, 2013 7:23 am | News | Comments

Researchers studying more effective ways to convert woody plant matter into biofuels have identified fundamental forces that change plant structures during pretreatment processes used in the production of bioenergy. Experimental techniques including neutron scattering and x-ray analysis with supercomputer simulations revealed unexpected findings about what happens to water molecules trapped between cellulose fibers.

Enhancing microalgae growth to boost green energy production

November 7, 2013 7:00 am | News | Comments

A groundbreaking nanoparticle system which stimulates the growth of microalgae has been developed by a team of Australian scientists. The technique creates an optical nanofilter that enhances the formation and yield of algae photopigments, namely chlorophyll, by altering the wavelengths of light absorbed by the algae.

A toolbox for carbon dioxide-free buildings

November 5, 2013 4:32 pm | News | Comments

A set of new building technologies introduced by an alliance of Swiss companies makes it possible to heat and cool buildings without the emission of carbon dioxide. One initial key element of the system is a hybrid collector, built into the roof construction, that serves as a photovoltaic system delivering both solar power and heat that is fed to an underground accumulator.

Forest waste used to develop cheaper, greener supercapacitors

October 24, 2013 7:42 am | News | Comments

Researchers report that wood-biochar supercapacitors can produce as much power as today’s activated-carbon supercapacitors at a fraction of the cost, and with environmentally friendly byproducts. In wood-biochar supercapacitors, the wood’s natural pore structure serves as the electrode surface, eliminating the need for advanced techniques to fabricate an elaborate pore structure. Wood biochar is produced by heating wood in low oxygen.

The chemistry of color

October 14, 2013 8:18 am | News | Comments

Univ. of Wisconsin-Madison researchers working at the intersection of basic and applied science focus on key factors like cost, environmental impacts and sometimes, color. Take, for example, asst. chemistry prof. Trisha Andrew: Researchers in her laboratory are developing next-generation solar cells using chromophores or, in lay terms, dyes.

How new diesel engines emit little nitrous oxide

September 11, 2013 7:27 am | News | Comments

The newest catalytic converters in diesel engines blast away a pollutant from combustion with the help of ammonia. Common in European cars, the engines exhaust harmless nitrogen and water. How they do this hasn't been entirely clear. Now, new research shows that the catalyst attacks its target pollutant in an unusual way, providing insight into how to make the best catalytic converters.

Arizona State, Sandia Labs sign renewable energy agreement

September 3, 2013 4:36 pm | News | Comments

A formal partnership agreement to encourage collaborative research, build educational and workforce development programs and inform policy endeavors regarding renewable energy efforts has been signed by Sandia National Laboratories and Arizona State Univ. The move will facilitate multidisciplinary collaborations and help them secure research funding.

Unique semiconductor-catalyst generates hydrogen fuel from sunlight

August 29, 2013 3:54 pm | by Lynn Yarris, Berkeley Lab | News | Comments

Bionic leaves that could produce fuels from nothing more than sunlight, water and carbon dioxide, with no byproducts other than oxygen, represent an ideal alternative to fossil fuels but also pose numerous scientific challenges. In a major advance, researchers at Lawrence Berkeley National Laboratory have developed a method by which molecular hydrogen-producing catalysts can be interfaced with a semiconductor that absorbs visible light.

X
You may login with either your assigned username or your e-mail address.
The password field is case sensitive.
Loading